Kahlert School of Computing researchers Ramansh Sharma, an incoming PhD student, and Dr. Varun Shankar, an Assistant Professor, have developed a novel method that expedites the training of a specific type of artificial intelligence (AI) system known as Physics-Informed Neural Networks (PINNs). This new technique, referred to as Discretely-Trained PINNs (DT-PINNs), offers promising improvements in training speed and efficiency and has the potential to broaden the applications of PINNs while lowering cost. The work was published at the Conference on Neural Information Processing Systems (NeurIPS) 2022. NeurIPS is a key top-tier event for those in the artificial intelligence field, showcasing research that spans machine learning, computational neuroscience, and more.

Neural networks form the foundation of modern AI technology. Inspired by the human brain, they are comprised by interconnected layers of nodes, or “neurons,” that collaborate to learn from data and make predictions or decisions. PINNs are a unique type of neural network that incorporate principles of physical laws into their structure. PINNs are used in diverse fields, including engineering, physics, and meteorology, where they can, for example, help predict structural responses to stress or forecast weather patterns.

Prof. Varun Shankar
Photo of Ramansh Sharma
Ramansh Sharma

Training neural networks is a complex and resource-intensive process. The system needs to adapt the strength of connections between nodes based on input data, a task involving the calculation of many partial derivatives. This is especially challenging for PINNs since the incorporation of exact derivative terms into the training process makes these connections more time-consuming to compute. The DT-PINN method developed by Sharma and Shankar addresses this issue by replacing these exact spatial derivatives (which define how a quantity is changing in space) with highly-accurate approximations calculated using a technique called meshless Radial Basis Function-Finite Differences (RBF-FD). Despite the fact that neural networks are traditionally trained using 32-bit floating point (fp32) operations for the purposes of speed, the University of Utah researchers found that using 64-bit floating point operations (fp64) on the Graphics Processing Unit (GPU) for DT-PINNs leads to faster training times.

“Our work on DT-PINNs represents a substantial progression in the training of PINNs. By improving the training process of PINNs, we have expanded their potential applications and reducing computational costs,” Prof. Shankar said. Sharma and Shankar demonstrated the efficiency of DT-PINNs through several experiments, showing that they could train 2-4 times faster on consumer GPUs without compromising on accuracy compared to training via traditional methods. The researchers applied the technique to linear as well as nonlinear spatial problems and demonstrated its applicability to a problem involving space as well as time dimensions.

The results of the research present a significant stride toward more efficient utilization of PINNs across various scientific and technological fields. By reducing the time it takes to train these networks, researchers and practitioners can quickly develop and deploy sophisticated models, aiding our understanding and prediction of complex physical phenomena.