Neural Networks: Practical Concerns

Machine Learning
Spring 2020
Neural Networks

• What is a neural network?
• Predicting with a neural network
• Training neural networks
• Practical concerns
This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns
Practical concerns

1. Addressing problems with SGD
2. Preventing overfitting
3. Number of hidden layers
Training neural networks with SGD

- May oscillate or reach an inferior local minima
- In practice, many large networks are trained on large amounts of data for realistic problems
Training neural networks with SGD

• May oscillate or reach an inferior local minima

• In practice, many large networks are trained on large amounts of data for realistic problems

• Many epochs (tens of thousands) may be needed for adequate training
 – Large data sets may require many hours of CPU or GPU time
 – Sometimes specialized hardware even

Termination criteria: Number of epochs, Threshold on training set error, No decrease in error, Increased error on a validation set

To avoid local minima: several trials with different random initial weights with majority or voting techniques
Training neural networks with SGD

- May oscillate or reach an inferior local minima
- In practice, many large networks are trained on large amounts of data for realistic problems
- Many epochs (tens of thousands) may be needed for adequate training
 - Large data sets may require many hours of CPU or GPU time
 - Sometimes specialized hardware even
- Termination criteria: Number of epochs, Threshold on training set error, No decrease in error, Increased error on a validation set
Training neural networks with SGD

• May oscillate or reach a local minima

• In practice, many large networks are trained on **large amounts of data** for realistic problems

• Many epochs (tens of thousands) may be needed for adequate training
 – Large data sets may require many hours of CPU or GPU time
 – Sometimes specialized hardware even

• **Termination criteria**: Number of epochs, Threshold on training set error, No decrease in error, Increased error on a validation set

• To **avoid bad local minima**: several trials with different random initial weights with majority or voting techniques
Preventing overfitting

• Running too many epochs may *over-train* the network and result in over-fitting
Preventing overfitting

• Running too many epochs may *over-train* the network and result in over-fitting

• Keep a **hold-out validation set** and test accuracy after every epoch
Preventing overfitting

- Running too many epochs may *over-train* the network and result in over-fitting

- Keep a **hold-out validation set** and test accuracy after every epoch

- Maintain weights for best performing network on the validation set and return it when performance decreases significantly beyond that
Preventing overfitting

- Running too many epochs may over-train the network and result in over-fitting

- Keep a hold-out validation set and test accuracy after every epoch

- Maintain weights for best performing network on the validation set and return it when performance decreases significantly beyond that

- To avoid losing training data to validation:
 - Use k-fold cross-validation to determine the average number of epochs that optimizes validation performance
 - Train on the full data set using this many epochs to produce the final results
Avoiding overfitting with Dropout training

Hinton et al, 2012

- During training, for each step, decide whether to delete a hidden unit with some probability p
 - That is, make predictions using only a randomly chosen set of neurons
 - Update only these neurons

- Tends to avoid overfitting

- Has a model averaging effect
 - Only some parameters get trained at any step
Number of hidden units

- **Too few hidden units** prevent the system from adequately fitting the data and learning the concept.

- **Using too many hidden units** leads to over-fitting.

- Similar cross-validation method can be used to determine an appropriate number of hidden units.
Neural networks: What we saw

• What is a neural network?
 – Multiple layers
 • Inner layers learn a **representation** of the data
 – Highly expressive
 • Is this always a good thing? What about the VC dimension? Overfitting?

• Training neural networks
 – Backpropagation
What we did not see

• Vast area, fast moving
 – Many new algorithms and tricks for learning that tweak on the basic gradient method
 – Eg: momentum, AdaDelta, Adam

• Some named neural networks
 – Restricted Boltzmann machines and autoencoders: Learn a latent representation of the data
 – Convolutional neural network: Modeled after the mammalian visual cortex, currently the state of the art for object recognition tasks
 – Recurrent neural networks: predict sequences
 – ...And many many more