Neural Networks: Prediction (i.e. the forward pass)

Machine Learning
Spring 2020

The slides are partly from Vivek Srikumar
Neural Networks

• What is a neural network?
• Predicting with a neural network
• Training neural networks
• Practical concerns
This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns
Let us consider an example network

We will use this example network as to introduce the general principle of how to make predictions with a neural network.
Let us consider an example network

Naming conventions for this example

- Inputs: x
- Hidden: z
- Output: y
Let us consider an example network

Naming conventions for this example
• Inputs: x
• Hidden: z
• Output: y

Bias feature, always 1
Let us consider an example network

Naming conventions for this example
- Inputs: x
- Hidden: z
- Output: y

Sigmoid activations
Bias feature, always 1
Let us consider an example network

Naming conventions for this example
- Inputs: x
- Hidden: z
- Output: y
Let us consider an example network

Naming Convention for Weights

$w_{\text{target_layer from, to}}$
Let us consider an example network

Naming Convention for Weights

\(w_{\text{target_layer from, to}} \)

\(w_{01}^o \)

From neuron #0 to neuron #1 in output layer
How to predict with a neural network: The forward pass

Given an input x, how is the output predicted
The forward pass

Given an input \mathbf{x}, how is the output predicted

$$z_1 = \sigma(w_{01}^h + w_{11}^h x_1 + w_{21}^h x_2)$$
The forward pass

Given an input x, how is the output predicted

$$z_2 = \sigma(w_{02}^h + w_{12}^h x_1 + w_{22}^h x_2)$$

$$z_1 = \sigma(w_{01}^h + w_{11}^h x_1 + w_{21}^h x_2)$$
The forward pass

Given an input \mathbf{x}, how is the output predicted

output $\mathbf{y} = w_{01}^o + w_{11}^o z_1 + w_{21}^o z_2$

$z_2 = \sigma(\mathbf{w}_0^h + \mathbf{w}_{12}^h \mathbf{x}_1 + \mathbf{w}_{22}^h \mathbf{x}_2)$

$z_1 = \sigma(\mathbf{w}_{01}^h + \mathbf{w}_{11}^h \mathbf{x}_1 + \mathbf{w}_{21}^h \mathbf{x}_2)$
The forward pass

Given an input \mathbf{x}, how is the output predicted

\[
\text{output } y = w_{01}^o + w_{11}^o z_1 + w_{21}^o z_2
\]

\[
z_2 = \sigma(w_{02}^h + w_{12}^h x_1 + w_{22}^h x_2)
\]

\[
z_1 = \sigma(w_{01}^h + w_{11}^h x_1 + w_{21}^h x_2)
\]

Questions?