Final Review

Machine Learning
Spring 2021
Final Exam

Mon May 3, 2021
10:30am - 12:30pm
Canvas (online)

https://www.cs.utah.edu/~zhe/teach/cs6350.html
Final Exam Policy

• Open book/website
• Do not search/post questions online
• Single/multiple choice
• Text description (no need to write math)...
• Problems can vary for different students
Coverage

• The whole semester

Suggestion: (1) review the lecture slides (2) carefully go through the paper problems in the homework assignments
Throughout this semester

- What is machine learning
- A variety of learning models and algorithms
- Different learning principles
- Ideas about learning theory
- Implementation and practice
Learning = generalization

“A computer program is said to learn from experience \(E \) with respect to some class of tasks \(T \) and performance measure \(P \), if its performance at tasks in \(T \), as measured by \(P \), improves with experience \(E \).”

Tom Mitchell (1999)
The formulation of machine learning

\[X: \text{Instance Space} \]

The set of examples that need to be classified

\[Y: \text{Label Space} \]

The set of all possible labels

Eg: The set of all possible names, documents, sentences, images, emails, etc

Eg: \{Spam, Not-Spam\}, \{+, -\}, etc.

Target function \[y = f(x) \]

The goal of learning: Find this target function

Learning is search over functions
Supervised learning

X: Instance Space
The set of examples

Y: Label Space
The set of all possible labels

Target function
$y = f(x)$

Learning algorithm only sees examples of the function f in action

Labeled training data

(x_1, f(x_1))
(x_2, f(x_2))
(x_3, f(x_3))
... (x_N, f(x_N))

Learning algorithm

A learned function $g: X \rightarrow Y$

Can you think of other protocols?
A variety of learning models

• Decision trees
• Boosting and ensembles: Adaboost, random forest
• Least mean square method for linear regression
• Perceptron
• Support vector machines (SVMs)
• Kernel Perceptron
• Kernel SVM
• Artificial neural networks, back propagation
• Logistic regression
How to categorize ML models: linear/nonlinear

- Linear models
 - Least mean square method
 - Perceptron
 - SVM
 - Logistic regression

- Nonlinear models (how to construct?)
 - Kernel methods: Kernel Perceptron, Kernel SVM
 - Neural networks
 - Decision trees
 - Adaboost and random forest
How to categorize ML models: probabilistic / non-probabilistic

- Probabilistic learning
 - Logistic regression

- Non-probabilistic models
 - Neural networks
 - Decision trees
 - SVM
 - Perceptron
 - ...

The all have probabilistic version!
Basic concepts/conclusions in computational learning theory

• PAC framework
• What is PAC learnability?
• What is sample complexity bound? What is the generalization error bound?
• VC dimension (why?)
• How is the large margin principle derived by the generalization error bound?

No need to memorize. But you need to really understand it!
Principles to Learn ML models

• Empirical risk minimization (ERM)
 – Least mean square method
 – Perceptron
 – Artificial neural networks

• Regularized empirical risk minimization (RERM)
 – SVM
 – MAP estimation for logistic regression

• Maximum a posterior (MAP)

• Maximum likelihood (MLE)

Connection to ERM and RERM
Learning algorithms

• Gradient descent
• Stochastic gradient descent
• What are their advantages and disadvantages?
Practice

• How to select hyper-parameters?
 – Hold out dataset
 – Cross validation.
Review suggestions

• Go through all the lecture slides. Understand the details

 • Decision trees
 • Boosting and ensembles: Adaboost, random forest
 • Least mean square method for linear regression
 • Perceptron
 • Support vector machines (SVMs)
 • Kernel Perceptron
 • Kernel SVM
 • Artificial neural networks, back propagation
 • Logistic regression
Review suggestions

• Go through all the homework problems you have worked. Do not need to go through the programming problems.
Good Luck!