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Overview

* A marriage between the graph theory and

probability theory: it uses graphs to represent
probabilistic models and facilitate inference

 The graphical structures reflect the conditional
independency of the model (intuitive, convenient
and expressive for modeling)

* The inference relies on the graphical structures (easy
to implement, apply, analyze and improve)

* Neural networks are instances of graphical models



Outline

e Bayesian networks
— Graphical representation
— Conditional independence
— D-separation, Bayes ball algorithm
— Markov blanket

 Markov random field
— Conditional independence
— Relation to directed graphs
* Inference

— Factor-graphs
— Sum-product algorithm
— Max-product, max-sum algorithms



Outline

e Bayesian networks
* Markov random fields

* |Inference



Bayesian networks

e Bayes’ Rule (theorem) revisited

p(Xl, X2)
P(Xl)

p(x2|x1) =

p(X1,...,X,) =p(X1)p(X2|x1)p(x3|x1,X2) . ..

p(Xn‘Xh"'?Xn—l) Why?

The decomposition of the joint probability defines a sampling procedure. We
sequentially sample each variable given the previously sampled ones



Bayesian networks

* Consider a probabilistic model over 3 random
variables: a,b,c

p(a,b,c) = p(c|a, b)p(bla)p(a)



Bayesian networks

 Question: can we use a graph to represent their joint
probability?

p(a,b, c) = p(cla,b)p(bla)p(a)



Bayesian networks

 Question: can we use a graph to represent their joint
probability?

p(a,b, c) = p(cla,b)p(bla)p(a)



Bayesian networks - representation

* Given the joint probability,
— Use a node to represent each random variable (RV)

— For each conditional distribution in the joint probability,
p(alb,,..., b,), add an edge from each b;to a (1 <i < m).
The RVs in the condition parts are represented as the
parents

— If no condition parts, the node has no parents

a

p(CL, b, C) — p(C|CL, b)p(b\a)p(a)



Bayesian networks - representation

* Another example

p(x1)p(z2)p(2s)p(T4|T1, T2, 3)p(25|T1, T3)p(26|Ta)P(T7| 24, 75)
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Bayesian networks

 We name this representation as a Bayesian network

* Bayesian networks must be a Directed Acyclic Graphs
(DAG)! Why?
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Bayesian networks

 We name this representation as a Bayesian network

* Bayesian networks must be a Directed Acyclic Graphs
(DAG)! Why?

A cycle means each random variable (RV) can be
sampled only if all the other RVs in the cycle have
been sampled. That means, the RVs in the cycle
cannot be sequentially sampled. This violates Bayes’
Rule, since Bayes’ Rule guarantees all the random
variables can be sequentially sampled via the joint

probability decomposition.
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Bayesian networks

* Polynomial regression

p(t,w) = p(w) [ pltalw)

[

n
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Bayesian networks

* How to be more specific and succinct?

d—1
N (t, wjxf;b,02
N (w|0, o) { ‘]Z_:o )

\

p(t, w|x, a,0?) = p(wl|a) | | p(ta|w,zn,0°)

=)

|
Y

n

parameters observations
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Bayesian networks

Small solid nodes: deterministic
parameters, uninterested
observations

Big empty nodes: latent random
variables

Plate with label N: N replicates
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Bayesian networks

* |In the training data, the outputs have been observed

Shaded nodes: observed latent
T o variables
®

oy
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Bayesian networks - notes

* The network structure is determined by the
factorization of the joint probability; different
factorization leads to different structures

p(&, b) C) — p(&)p(b a)p(c a, b) I
p(a, b7 C) — p(b)p(c b)p(a b7 C) networks:

So, equivalent models may have different structures
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Bayesian networks - notes

* How to design the factorization of the joint
probability is the key of the probabilistic modeling.

e Using the full Bayes formula will lead to a fully
connected network, which represents the most
general modelling (without any assumptions). But
this is not what we want.

* For probabilistic modeling, we nearly always use
domain knowledge to simplify the joint probability,
which can be reflected by the network structure. The
simplification is called conditional independence.
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Bayesian networks

e Linear Gaussian model

* For multivariate Gaussian variables x, ..., xy

p(x;lpa,) =N | z; Z w;; x5 + by, v;

jEpai

Questionl: what is the network structure if we do not make any
assumption?  Fully connected

Question2: How many parameters do we need to
estimate? O(N2)
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Bayesian networks

e Linear Gaussian model: Let us choose a chain
structure

J€Epa;

p(x;lpa,) =N (:IZ‘Z Z Wi T + bi,vi)

Question2: How many parameters do we need to
estimate? O(N)
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Bayesian networks

* In general, the simplification of the Bayes‘ Rule
reflects our ideas, tricks and knowledge in
probabilistic modeling

 How is the simplification reflected?

Conditional independence!
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Conditional Independence

* Consider a probabilistic model over 3 random
variables: a,b,c

a is conditional independent of b given c if

p(alb,c) = p(alc) Why?

allb|c
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Conditional Independence

 What is the Bayesian network?

p(a, b, c) = p(c)p(blc)p(alb, c)|=

C

The network structure is simplified as well

Ip(blefpale)
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Conditional Independence

* Practically, how do we design a Bayesian network?

Consider a sampling (generative) process

° We usually do not explicitly
consider all possible conditional

independences!
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Conditional Independence

* Question: For a (complex) Bayesian network, given
arbitrary nonintersecting sets of nodes A, B, C, how
do we test the conditional independency?

Al B|C

* This is important to analyze our model
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D-separation

e Basic case |: tail-to-tail

all b|0
allb|c

Why?
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D-separation

e Basic case Il: head-to-tail

O—e—O

all b0
allb|c

Why?
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D-separation

e Basic case lll (a little odd): head-to-head

allb|0

all b|c

Why?
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B: battery

D-separation F: fuel tank

G: gauge

* head-to-head: explain away effect

p(B=1) 0.9
p(F=1) = 009
B F
. p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 02
p(G=1|B=0,F=0) 0.1
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B: battery

D-separation F: fuel tank

G: gauge

* head-to-head: explain away effect

B F
p(G =0|F =0)p(F =0)
F=0|G = = ~ (0.257
p( | ) (G =0)
G
>
B F p(G=0/B=0,F=0)p(F =0)
F=0/G=0,B=0)= ~0.111
p(F=0] )= S o PG = 0B = 0, F)p(F)
&

Why? Batter being dead partly takes away the effect of zero Gauge
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D-separation

* head-to-head: more general case

@l (b
G all b

c or any
descendent(c)
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D-separation

* In general, for a (complex) Bayesian network, given
arbitrary nonintersecting sets of nodes A, B, C, how
to test the conditional independency?

AILB|C

32



D-separation (Bayes ball algo.) A1 B|C

e Step 1: Shade all the nodes in C

e Step 2: For every path from any node in A to any node in
B

— If the path contains a node, such that

* the arrows on the path meet head-to-tail or tail-to-tail at a node in C,
the path is blocked and continue, OR

* the arrows on the path meet head-to-head at a node, and neither the
node or any of its descendent is in C,

the path is blocked and continue
— Otherwise, return A 1L B | C' does not hold

 Step 3:if every path is blocked, returnA 1. B | C' holds
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D-separation - examples

A = {a}, B = {b}, C = {c}

A = {a}, B = {b}, C = {f}
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Markov-blanket

* Consider a Bayesian network with D nodes, x4, ..., Xp

* For a particular node x;, conditioned on what set of
variables, x; are independent to the remaining
variables?

P\ X1,...,XD

p(Xi|X{j7£z'}) — ( 1 )
/p(Xl,...,XD)dXZ'

Hp(xk\]@ak)

/HP(XHPak) dx;
k
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Markov-blanket

* Answer: x;'s parents, x;'s children and the children’s
co-parents

* These variables are called the Markov-blanket of x;
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Some thoughts

* D-separation is a bit subtle to test the conditional
independency

* Can we have easier graphical representations that
allow more natural tests? e.g., only based on paths
without considering arrow directions?
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Markov random fields

Markov blanket

38



Cligues and maximum cliques
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Joint distribution

p(x) = %HWJ(XO)
C

Where ¥c(xc) 2 0 is the potential function over maximum clique C

Z = ZH%DC(XC)
x C

is the normalization constant, also called partition function

Energy and the Boltzmann distribution

Ve (xe) =exp{—E(xc)}
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lllustration: Image Denoise

Ground-truth noisy observation
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lllustration: Image Denoise

o o
0. ®
I |

4;/” p(x,y) = - exp{—E(x,y)}

E(x,y) = hzl‘i—ﬁzxﬂj —Uziviyi

{7}
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lllustration: Image Denoise

noisy observation restored version (ICM
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How to convert directed to undirected
graphs

L1 4% IN-—-1 TN

p(x) :|P(371)P($2|371)' p(x3|z2) - p(zN|TN_1)

s

p(x) = - Y1,2(21,22) Y2,3(T2,23) - UN_1,N(ZTN-1,ZN)

X ) IN -1 N
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How to convert directed to undirected
graphs

Add additional links: “marrying parents”, i.e., moralization

I I3 T T3

xo Z2

X4 X4

p(x) = plz1)p(@2)p(w3)p(walzr, 22, 23) = 1) (21, T2, T3, T4)
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Directed vs. undirected graphs

C
A B
A B
C
D
AL B0 AJ B0
AMLB|C AJ_LB’CUD

ClLD|AUB

46



What you need to know

 How to construct Bayes networks and Markov
random field

 How to convert a BN to MRF (moralization)

BN is an acyclic directed graph, why? (Bayes’ Rule)
* Conditional independence

 Head-to-tail, tail-to-tail and head-to-head

* Explain away effect

e D-separation (Bayes ball algorithm)

* BNs are NOT equivalent to MRFs!
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