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So far, we have ...

MCMC

Variational inference
Message passing
Laplace’s approx.

Generalized linear models
Graphical models
Bayesian neural networks
Gaussian process

Commonly used Coniugate priors Uninformative
distributions Jugate p priors
Probability space, Exponential Exchangeability, de
RV., expectation, family Finetti's theorem
variance....
Matrix/vector Convex Information

derivative MLE, MAP conjugate theory 2




Our next stage

* Discuss several important and widely used
probabilistic models (and framework)

e Discuss efficient posterior inference algorithm
* We will start with generalized linear models



Outline

* Linear models for regression

 Linear models for classification

e Generalized linear models



Linear models for regression

* Linear models with (nonlinear) basis functions
e Overfitting and regularization

e Bayesian linear regression

* Predictive distribution

* Empirical Bayes



Linear models for regression

* Simplest model: linear regression

Y(X, W) =wy + w1z, + ...+ wpxp

X:(.’Jfl,...



Linear models for regression

* Simplest model: linear regression
Y(X, W) =wy + w1z, + ...+ wpxp

X = (.’]31,...,CCD)T

Limitation: only model linear function of the input variables



Linear models for regression

* To allow nonlinear modeling, we in general introduce
nonlinear M basis functions over the input variables

M—1
y(x, W) =wo + »  w;d;(x)
j=1



Linear models for regression

* To allow nonlinear modeling, we in general introduce
nonlinear M basis functions over the input variables

y(x, W) =wo + »  w;d;(x)

"/

¢; : R — R

Basis function: can be any (nonlinear) over the input variables



Examples of basis functions
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Examples of basis functions

Through nonlinear basis functions, we can model
nonlinear functions while maintaining a linear structure
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Examples of basis functions

Through nonlinear basis functions, we can model
nonlinear functions while maintaining a linear structure

Neural Networks can be viewed as nonlinear bases as well
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Maximum likelihood estimation (MLE)

M—1
y(x, W) =wo+ Y w;e;(x)
j=1

 Assume the observation is the function corrupted by
random Gaussian noise

p(tlx, w,B8) = N(tly(x, w), 87")
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Maximum likelihood estimation (MLE)

* Consider an observed dataset X = {x;,...,xx}
t1, ... tN

likelihood
N

p(tIX,w,3) = HN(tn|WT¢(Xn)aﬁ_1)

n=1

N d(xn) = [Po(Xn); - - - ¢M—1(Xn)]—r
Inptiw,3) = > InN(tn|w p(xn), 87"
N N

= 5 In 3 — E) In(27) — BEp(W)

Ep(w) = % > Atn —w p(xn))’
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Maximum likelihood estimation (MLE)

Vinp(tlw, 3

Mz

{tn — WT¢(Xn)} qb(Xn)T

0= tad(x,)" — W (Z qs(xn)qs(xn)T)

Txa\" ! /T
wyr, = (P Qt
Design matrix
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Maximum likelihood estimation (MLE)

wyr = (87®) @7t

/%(Xl) ¢1(x1)
Po(x2)  P1(X2)

(I)T — ((I)T(I)) —1 o7t Moore-Penrose pseudo-inverse

\¢0(1;<N) ¢1(;(N)

P —1(x1)
dn—1(X2) \

bris(xn) )

N x M
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Overfitting and regularization

* Consider polynomial regression

M
y(x, W) = wo + wi T + wez® + oA wyaM = ijazj

7=0

Question: what is the highest order we can
choose (M)?

17



Overfitting and regularization
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Overfitting and regularization

M=0 M=1 M=6 M=09
wg | 019 082 03I 0.35
Wk 127 7.99 232.37
wi -25.43 -5321.83
wi 17.37  48568.31
wr -231639.30
wi 640042.26
wy -1061800.52
W 1042400.18
wi -557682.99
we 125201.43
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Overfitting and regularization

—©— Training
—O— Test

20



Overfitting: how to address it?

M=0 M=1 M=6 M =9
wi | 019 082 03l 0.35
wk 127 7.99 232.37
w3 -25.43 -5321.83
wk 1737 48568.31
wk -231639.30
w? 640042.26
wi -1061800.52
w? 1042400.18
w? -557682.99
wi 125201.43

We should constraint the weights from growing too big;

Weights are encouraged to decay toward O, unless
supported by data!



Regularized least square

< N\

ED (w) — )\EW (W) Regularization strength

1 EN: i 2

2 ”:1{tn ) VQ §WTW
1 N T /2)\ T
9 E ,{tn — W ¢(Xn)} + §W W
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Regularized least square

 Set gradientto O

w=(\+oT®) ot

wy = (87®) &7t
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Go back to polynomial regression again

A

N

1

— Z{tn —wip(x,) P+ cwlw

2 2

n=1
InA\=-00 InA=-18 InA=0

wy 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy | -231639.30 -3.89 -0.03
ok 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wr | 1042400.18 -45.95 -0.00
wi | -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01
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Go back to polynomial regression again

1t In\=0 1
(@)
t
(@)
(@)
| 7 o _O ]
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More general regularizer

1 A\ o
T 2
52:1{75%_“’ ¢ (xn)} +§Z:1‘wj‘q
n= J]=

When q = 2, we go back to our quadratic regularizer

When g =1, itis known as lasso: a classical sparse
regression approach; it turns out using lasso can
lead many weights to O

In general, the smaller q leads to sparser models
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Bayesian linear regression

* We assign a prior over the weights, which
corresponds to a regularizer

p(w) = N (w|myg, So)

p(tlw,X) = N(t|@w, 57 1)

/

p(W‘t) _ N(W’mN, SN) my = Sy (So_lmo —I—ﬁ(I)Tt)
Sy = S;'+pe'®.
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Bayesian linear regression

* Take a simple choice

p(wle) = N(w|0,a™'T)

p(wlt) = N(w[my, Sy)

= (Sn®'t
Sy = al+p3®'®.

=
2
|




See how the
posterior changes
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Bayesian linear regression

e Gaussian prior corresponds to quadratic
regularization; Laplace prior lasso

* In general

p(W|a) = [g (%)Uq F(ll/q)] exp (% ; qu>

Laplace’s prior

q=1,
g = 2, Gaussian
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Predictive distribution

 We want to integrate all values of w into prediction
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Predictive distribution

Learn a sinusoidal function with 9 Gaussian basis functions .



t(x,w) using samples from the posterior p(w|t)
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Bayesian model comparison

e Suppose we want to compare a set of models {M,, ...,

M.}

 The data is generated by one model, which we are
not sure. We express the prior by p(M))

* Given the training data D, we wish to evaluate

p(M;|D) o< p(M;)p(D|M;)

Model evidence
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Bayesian model comparison

* Bayes factor  p(D|M;)/p(DIM;)
 Model averaging: Bayesian version of ensemble

p(tlx, D) = > plt|x, My, D)p(M;[D)

1=1

* Model selection: choose the most probable model
alone to make prediction
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Crude evidence approximation

* Assume the posterior is centered around its mode
and flat prior p(w) = 1/Awpior

Aprostelrior

A

36



Crude evidence approximation

* Assume the posterior is centered around its mode
and flat prior p(w) = 1/Awpior

Aprostelrior

A/wprior

37



Evidence penalizes over-complex models

Inp(D) =~ In p(D|wyap) + In (

Given M parameters and assume the same ratio

Inp(D) ~ Inp(D|wyap) + M In (
|

The larger M, the more complex the model, the better fit of the
data (1°t term), the smaller the second term
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Evidence penalizes over-complex models

 Maximizing evidence naturally leads to a trade-off
between data fitting and model complexity

p(D) M,

39



Evidence approximation & empirical Bayes

* Approximating the predictive distribution by

maximizing the evidence [p(W!a) = N(wl[0,a™'T) J
pltlw, X) = N(t|Bw, 51

p(tlt) = /// (t|w, B)p(w|t, a ﬁj (a, B|t) dw dad 3

p(it) ~ p(t1t @, ) = / plilw, Bp(wlt @, 3) dw

where the hyperparameters «, 3 are obtained by
maximizing the evidence p(t|a, 3) .

This is known as Empirical Bayes or type || maximum
likelihood

40



Model evidence and cross-validation

e Consider the degree of polynomial regression

—©— Training
—©— Test

Root-mean-square error Model evidence

41



Outline

Linear models for regression

Linear models for classification
— Logistic regression

— Probit regression

— Multi-class regression

— Ordinal regression

General linear models

42



Logistic regression

* Let us first consider binary classification problem: C,,
C;

p(Cil9) = y(¢) = o (W' )

o(a) =1/(1 +exp(—a))  Logistic sigmoid
function

p(Cal@p) = 1 — p(Ci|0)

43



Logistic regression

* Interesting property of sigmoid function

44



Logistic regression

* Given a dataset {®..in}, where t. € {0,1}, ¢, = ¢(xn)

and n=1,..., N, the likelihood function is given by

N
t‘W Hyn {1_yn}1 t

45



Logistic regression

E(w) = —Inp(tjw) = Z{t Iy, + (1 —t,) In(1 —1,,)}
N
VE(W) — (yn — tn)¢n

n=1



Iterative reweighted least squares

* Newton-Raphson scheme

W(new) _ W(old) o H_1VE(W)

Hessian matrix

47



Iterative reweighted least squares

* First consider linear model for regression

1 N

B(w) =5 Y {ta —w' ,}?

n=1

N
VE(w) = ) (W', —tn)¢, =2 dw — &7t

n=1
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Iterative reweighted least squares

N
Zw b, —tn)p, = ®Tdw — Tt

H=VVE(w qu br
W(new) _ W(Old) . (@T@)—l {@T@W(Old) . @Tt}
= (@'®) et

The same as least square solution!

One step solves it! Why?

49



Iterative reweighted least squares

* Logistic regression

N x N diagonal matrix R, = yn(l — yn) Yn — U(WT¢n)

50



Iterative reweighted least squares

W(new) _ W(Old) L (@TR@)_léT(y . t)
= (2'R®)"'{@'ReWCY — 3T (y-1t)}
= (®'R®)'®'Rz

z=3wloY R}y —1t)

Iterative updates |
I

Updated responses

Weight matrix R dependson W
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Multiclass logistic regression

* Suppose we have K classes, C;, ..., Cy

exp(ag) T
p(Ck|®) = yr(p) = ar = Wi @
Zj exp(a;)
K groups of parameters {Wk} This is often referred to as softmax
Yk

ZIR T —
8aj Y ( kj ?JJ)
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Multiclass logistic regression

e likelihood

??‘

N K
p(Tiwy,...,wie) = [ [] p(Celepn)" HHyzk

n=1 k=1 n=1 k=1

T: N x K observation matrix, each row is one-hot vector
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Multiclass logistic regression

* We can use Newton-Raphson updates as well

M=

ijE(le'“vWK): (ynj_tnj)¢n

n=1

N
kaijE(W17 <. 7WK) — = Z ynk(lkj - ynJ)qbngbZ
n=1
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Probit regression

* An alternative model for binary classification

p(Ci|p) = y(¢) = P(w' ¢)

Y(a) = /a/\/'(ml(), 1)dx
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Probit function vs. logistic function

0.8} —Probit |-

—Logistic

0.6

0.4

0.2




Probit regression

* Equivalent latent variable model

Given a=w'o

(sample the label t from p(t|a) = ¢(a)t(1 _ w(a))lﬂ

|

/Sample a latent variable z from
z ~N(zla, 1)

Sample the label t from a step distribution

p(tlz) =1t=0)I(z<0)+I(t=1)I(z > 0)

~
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Ordinal regression

* Consider to predict K classes with ordering
relationship, C; < C, <...< Cy, e.g., rank, disease
progression, ...

* Using multi-class logistic regression is not
appropriate
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Ordinal regression

* Consider multi-class Probit regression
Partition real domain into ordered regions
(007 bl]) (b17 b2]7 RN (bK—17 bK]7 (bK7 OO)
Given a=w' ¢

Sample a latent variable z from 2z ~ N (z|a, 1)

Check which region z falls in, e.g., [bx,br11)

Output the corresponding label: k
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Generalized linear models

* Let us consider the exponential family to model data

p(tln) = exp (nt — g(n))

Consider the expectation of t

dg(n)
) =y =4
This is a mapping n = ¥ (y)

From expectation to natural parameters
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Generalized linear models

* Inlinear model, we commonly model the expectation
parameters as

y=f(w'o(x))

* Ifwechoose f=14~1 n=1(y)

|

n=y (W' d(x) =w'$(x)

f+ is called link function (link expectation to natural paras)
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Generalized linear models

e Given training data (x1,%1),..., (Xn,tN)

E(w) =) logp(tn|n)
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Generalized linear models

N 4 g D)
OE(w) _ 3y O, _ 09 O | Bitaln,) =y = 4
OwW OwW on,, Ow "
n=1 ! M =W ()
N
n— / \
Feature vector prediction error

This is consistent with linear regression and
logistic regression
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What you should know

* What is design matrix?
* How to obtain MLE for linear regression?

 How to obtain posterior and predictive distribution
for linear regression?

 What is the empirical Bayes and type Il MLE?
* Newton-Rapson method for logistic regression

 What is probit regression? What is the equivalent
model? How to conduct multi-class classification?

 What is generalized linear model? What is link
function? What is the general form of the gradient?
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