
1

Generalized Linear Models

Machine	Learning
Fall	2017

Supervised	Learning:	The	Setup

1

Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu

School of Computing

mailto:zhe@cs.Utah.edu

So far, we have …

2

Commonly used
distributions

Exchangeability, de
Finetti's theorem

Probability space,
R.V., expectation,

variance….

Uninformative
priors

Exponential
family

Conjugate priors

MLE, MAP

Probability
models

Inference

Matrix/vector
derivative

Convex
conjugate

Information
theory

Generalized linear models
Graphical models
Bayesian neural networks
Gaussian process
….

MCMC
Variational inference
Message passing
Laplace’s approx.
….

Our next stage

• Discuss several important and widely used
probabilistic models (and framework)

• Discuss efficient posterior inference algorithm
• We will start with generalized linear models

3

Outline

• Linear models for regression
• Linear models for classification
• Generalized linear models

4

Linear models for regression

• Linear models with (nonlinear) basis functions
• Overfitting and regularization
• Bayesian linear regression
• Predictive distribution
• Empirical Bayes

5

• Simplest model: linear regression

6

Linear models for regression

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

• Simplest model: linear regression

7

Linear models for regression

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

Limitation: only model linear function of the input variables

• To allow nonlinear modeling, we in general introduce
nonlinear M basis functions over the input variables

8

Linear models for regression

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

• To allow nonlinear modeling, we in general introduce
nonlinear M basis functions over the input variables

9

Linear models for regression

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

Basis function: can be any (nonlinear) over the input variables

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R

7

Examples of basis functions

• D = 1

10

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) = x
j

7

• D > 1

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) = x
j

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

7

…

Examples of basis functions

• D = 1

11

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) = x
j

7

• D > 1

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) = x
j

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

7

…

Through nonlinear basis functions, we can model
nonlinear functions while maintaining a linear structure

Examples of basis functions

• D = 1

12

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

3.1. Linear Basis Function Models 139

or feature extraction, to the original data variables. If the original variables com-
prise the vector x, then the features can be expressed in terms of the basis functions
{φj(x)}.

By using nonlinear basis functions, we allow the function y(x,w) to be a non-
linear function of the input vector x. Functions of the form (3.2) are called linear
models, however, because this function is linear in w. It is this linearity in the pa-
rameters that will greatly simplify the analysis of this class of models. However, it
also leads to some significant limitations, as we discuss in Section 3.6.

The example of polynomial regression considered in Chapter 1 is a particular
example of this model in which there is a single input variable x, and the basis func-
tions take the form of powers of x so that φj(x) = xj . One limitation of polynomial
basis functions is that they are global functions of the input variable, so that changes
in one region of input space affect all other regions. This can be resolved by dividing
the input space up into regions and fit a different polynomial in each region, leading
to spline functions (Hastie et al., 2001).

There are many other possible choices for the basis functions, for example

φj(x) = exp
{
−(x − µj)2

2s2

}
(3.4)

where the µj govern the locations of the basis functions in input space, and the pa-
rameter s governs their spatial scale. These are usually referred to as ‘Gaussian’
basis functions, although it should be noted that they are not required to have a prob-
abilistic interpretation, and in particular the normalization coefficient is unimportant
because these basis functions will be multiplied by adaptive parameters wj .

Another possibility is the sigmoidal basis function of the form

φj(x) = σ
(x − µj

s

)
(3.5)

where σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
. (3.6)

Equivalently, we can use the ‘tanh’ function because this is related to the logistic
sigmoid by tanh(a) = 2σ(a) − 1, and so a general linear combination of logistic
sigmoid functions is equivalent to a general linear combination of ‘tanh’ functions.
These various choices of basis function are illustrated in Figure 3.1.

Yet another possible choice of basis function is the Fourier basis, which leads to
an expansion in sinusoidal functions. Each basis function represents a specific fre-
quency and has infinite spatial extent. By contrast, basis functions that are localized
to finite regions of input space necessarily comprise a spectrum of different spatial
frequencies. In many signal processing applications, it is of interest to consider ba-
sis functions that are localized in both space and frequency, leading to a class of
functions known as wavelets. These are also defined to be mutually orthogonal, to
simplify their application. Wavelets are most applicable when the input values live

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) = x
j

7

• D > 1

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) = x
j

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

7

…

Through nonlinear basis functions, we can model
nonlinear functions while maintaining a linear structure

Neural Networks can be viewed as nonlinear bases as well

Maximum likelihood estimation (MLE)

• Assume the observation is the function corrupted by
random Gaussian noise

13

140 3. LINEAR MODELS FOR REGRESSION

−1 0 1
−1

−0.5

0

0.5

1

−1 0 1
0

0.25

0.5

0.75

1

−1 0 1
0

0.25

0.5

0.75

1

Figure 3.1 Examples of basis functions, showing polynomials on the left, Gaussians of the form (3.4) in the
centre, and sigmoidal of the form (3.5) on the right.

on a regular lattice, such as the successive time points in a temporal sequence, or the
pixels in an image. Useful texts on wavelets include Ogden (1997), Mallat (1999),
and Vidakovic (1999).

Most of the discussion in this chapter, however, is independent of the particular
choice of basis function set, and so for most of our discussion we shall not specify
the particular form of the basis functions, except for the purposes of numerical il-
lustration. Indeed, much of our discussion will be equally applicable to the situation
in which the vector φ(x) of basis functions is simply the identity φ(x) = x. Fur-
thermore, in order to keep the notation simple, we shall focus on the case of a single
target variable t. However, in Section 3.1.5, we consider briefly the modifications
needed to deal with multiple target variables.

3.1.1 Maximum likelihood and least squares
In Chapter 1, we fitted polynomial functions to data sets by minimizing a sum-

of-squares error function. We also showed that this error function could be motivated
as the maximum likelihood solution under an assumed Gaussian noise model. Let
us return to this discussion and consider the least squares approach, and its relation
to maximum likelihood, in more detail.

As before, we assume that the target variable t is given by a deterministic func-
tion y(x,w) with additive Gaussian noise so that

t = y(x,w) + ε (3.7)

where ε is a zero mean Gaussian random variable with precision (inverse variance)
β. Thus we can write

p(t|x,w, β) = N (t|y(x,w), β−1). (3.8)

Recall that, if we assume a squared loss function, then the optimal prediction, for a
new value of x, will be given by the conditional mean of the target variable. In theSection 1.5.5
case of a Gaussian conditional distribution of the form (3.8), the conditional mean

138 3. LINEAR MODELS FOR REGRESSION

Given a training data set comprising N observations {xn}, where n = 1, . . . , N ,
together with corresponding target values {tn}, the goal is to predict the value of t
for a new value of x. In the simplest approach, this can be done by directly con-
structing an appropriate function y(x) whose values for new inputs x constitute the
predictions for the corresponding values of t. More generally, from a probabilistic
perspective, we aim to model the predictive distribution p(t|x) because this expresses
our uncertainty about the value of t for each value of x. From this conditional dis-
tribution we can make predictions of t, for any new value of x, in such a way as to
minimize the expected value of a suitably chosen loss function. As discussed in Sec-
tion 1.5.5, a common choice of loss function for real-valued variables is the squared
loss, for which the optimal solution is given by the conditional expectation of t.

Although linear models have significant limitations as practical techniques for
pattern recognition, particularly for problems involving input spaces of high dimen-
sionality, they have nice analytical properties and form the foundation for more so-
phisticated models to be discussed in later chapters.

3.1. Linear Basis Function Models

The simplest linear model for regression is one that involves a linear combination of
the input variables

y(x,w) = w0 + w1x1 + . . . + wDxD (3.1)

where x = (x1, . . . , xD)T. This is often simply known as linear regression. The key
property of this model is that it is a linear function of the parameters w0, . . . , wD. It is
also, however, a linear function of the input variables xi, and this imposes significant
limitations on the model. We therefore extend the class of models by considering
linear combinations of fixed nonlinear functions of the input variables, of the form

y(x,w) = w0 +
M−1∑

j=1

wjφj(x) (3.2)

where φj(x) are known as basis functions. By denoting the maximum value of the
index j by M − 1, the total number of parameters in this model will be M .

The parameter w0 allows for any fixed offset in the data and is sometimes called
a bias parameter (not to be confused with ‘bias’ in a statistical sense). It is often
convenient to define an additional dummy ‘basis function’ φ0(x) = 1 so that

y(x,w) =
M−1∑

j=0

wjφj(x) = wTφ(x) (3.3)

where w = (w0, . . . , wM−1)T and φ = (φ0, . . . , φM−1)T. In many practical ap-
plications of pattern recognition, we will apply some form of fixed pre-processing,

Maximum likelihood estimation (MLE)

• Consider an observed dataset

14

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

likelihood

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)

<latexit sha1_base64="r7LMvnMWKO3ye1TwhMWSTo1G7yk=">AAACSXicbVBNS8QwEE3X7/Vr1aOX4CIo6NKKqBdB9OJFUHBV2NaapqkbNk1KMhWXsn/Pizdv/gcvHhTxZLruQVcHQh7vzWNmXpQJbsB1n53KyOjY+MTkVHV6ZnZuvraweGFUrilrUiWUvoqIYYJL1gQOgl1lmpE0Euwy6hyV+uUd04YreQ7djAUpuZU84ZSApcLaTeFHSsSmm9oP+1mb99b8lEA7Sor7XijX8T5ulXTo/uY3sC9iBWajbwqLk01vyBlc+6CysFZ3G26/8F/gDUAdDeo0rD35saJ5yiRQQYxpeW4GQUE0cCpYr+rnhmWEdsgta1koScpMUPST6OFVy8Q4Udo+CbjP/nQUJDXlrbazXNUMayX5n9bKIdkLCi6zHJik34OSXGBQuIwVx1wzCqJrAaGa210xbRNNKNjwqzYEb/jkv+Biq+HtNLbPtusHh4M4JtEyWkFryEO76AAdo1PURBQ9oBf0ht6dR+fV+XA+v1srzsCzhH5VZeQLAbSy+A==</latexit>

�(xn) = [�0(xn), . . . ,�M�1(xn)]
>

15

Maximum likelihood estimation (MLE)

3.1. Linear Basis Function Models 141

will be simply

E[t|x] =
∫

tp(t|x) dt = y(x,w). (3.9)

Note that the Gaussian noise assumption implies that the conditional distribution of
t given x is unimodal, which may be inappropriate for some applications. An ex-
tension to mixtures of conditional Gaussian distributions, which permit multimodal
conditional distributions, will be discussed in Section 14.5.1.

Now consider a data set of inputs X = {x1, . . . ,xN} with corresponding target
values t1, . . . , tN . We group the target variables {tn} into a column vector that we
denote by t where the typeface is chosen to distinguish it from a single observation
of a multivariate target, which would be denoted t. Making the assumption that
these data points are drawn independently from the distribution (3.8), we obtain the
following expression for the likelihood function, which is a function of the adjustable
parameters w and β, in the form

p(t|X,w, β) =
N∏

n=1

N (tn|wTφ(xn), β−1) (3.10)

where we have used (3.3). Note that in supervised learning problems such as regres-
sion (and classification), we are not seeking to model the distribution of the input
variables. Thus x will always appear in the set of conditioning variables, and so
from now on we will drop the explicit x from expressions such as p(t|x,w, β) in or-
der to keep the notation uncluttered. Taking the logarithm of the likelihood function,
and making use of the standard form (1.46) for the univariate Gaussian, we have

ln p(t|w, β) =
N∑

n=1

lnN (tn|wTφ(xn), β−1)

=
N

2
ln β − N

2
ln(2π) − βED(w) (3.11)

where the sum-of-squares error function is defined by

ED(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2. (3.12)

Having written down the likelihood function, we can use maximum likelihood to
determine w and β. Consider first the maximization with respect to w. As observed
already in Section 1.2.5, we see that maximization of the likelihood function under a
conditional Gaussian noise distribution for a linear model is equivalent to minimizing
a sum-of-squares error function given by ED(w). The gradient of the log likelihood
function (3.11) takes the form

∇ ln p(t|w, β) =
N∑

n=1

{
tn − wTφ(xn)

}
φ(xn)T. (3.13)142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)



 . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)



 . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

Design matrix

16

Maximum likelihood estimation (MLE)

142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)



 . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)



 . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

7

142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)



 . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

Moore-Penrose pseudo-inverse

Overfitting and regularization

• Consider polynomial regression

17

1.1. Example: Polynomial Curve Fitting 5

sin(2πx) and then adding a small level of random noise having a Gaussian distri-
bution (the Gaussian distribution is discussed in Section 1.2.4) to each such point in
order to obtain the corresponding value tn. By generating data in this way, we are
capturing a property of many real data sets, namely that they possess an underlying
regularity, which we wish to learn, but that individual observations are corrupted by
random noise. This noise might arise from intrinsically stochastic (i.e. random) pro-
cesses such as radioactive decay but more typically is due to there being sources of
variability that are themselves unobserved.

Our goal is to exploit this training set in order to make predictions of the value
t̂ of the target variable for some new value x̂ of the input variable. As we shall see
later, this involves implicitly trying to discover the underlying function sin(2πx).
This is intrinsically a difficult problem as we have to generalize from a finite data
set. Furthermore the observed data are corrupted with noise, and so for a given x̂
there is uncertainty as to the appropriate value for t̂. Probability theory, discussed
in Section 1.2, provides a framework for expressing such uncertainty in a precise
and quantitative manner, and decision theory, discussed in Section 1.5, allows us to
exploit this probabilistic representation in order to make predictions that are optimal
according to appropriate criteria.

For the moment, however, we shall proceed rather informally and consider a
simple approach based on curve fitting. In particular, we shall fit the data using a
polynomial function of the form

y(x,w) = w0 + w1x + w2x
2 + . . . + wMxM =

M∑

j=0

wjx
j (1.1)

where M is the order of the polynomial, and xj denotes x raised to the power of j.
The polynomial coefficients w0, . . . , wM are collectively denoted by the vector w.
Note that, although the polynomial function y(x,w) is a nonlinear function of x, it
is a linear function of the coefficients w. Functions, such as the polynomial, which
are linear in the unknown parameters have important properties and are called linear
models and will be discussed extensively in Chapters 3 and 4.

The values of the coefficients will be determined by fitting the polynomial to the
training data. This can be done by minimizing an error function that measures the
misfit between the function y(x,w), for any given value of w, and the training set
data points. One simple choice of error function, which is widely used, is given by
the sum of the squares of the errors between the predictions y(xn,w) for each data
point xn and the corresponding target values tn, so that we minimize

E(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 (1.2)

where the factor of 1/2 is included for later convenience. We shall discuss the mo-
tivation for this choice of error function later in this chapter. For the moment we
simply note that it is a nonnegative quantity that would be zero if, and only if, the

Question: what is the highest order we can
choose (M)?

18

Overfitting and regularization1.1. Example: Polynomial Curve Fitting 7

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

Figure 1.4 Plots of polynomials having various orders M , shown as red curves, fitted to the data set shown in
Figure 1.2.

(RMS) error defined by
ERMS =

√
2E(w!)/N (1.3)

in which the division by N allows us to compare different sizes of data sets on
an equal footing, and the square root ensures that ERMS is measured on the same
scale (and in the same units) as the target variable t. Graphs of the training and
test set RMS errors are shown, for various values of M , in Figure 1.5. The test
set error is a measure of how well we are doing in predicting the values of t for
new data observations of x. We note from Figure 1.5 that small values of M give
relatively large values of the test set error, and this can be attributed to the fact that
the corresponding polynomials are rather inflexible and are incapable of capturing
the oscillations in the function sin(2πx). Values of M in the range 3 ! M ! 8
give small values for the test set error, and these also give reasonable representations
of the generating function sin(2πx), as can be seen, for the case of M = 3, from
Figure 1.4.

19

8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w!) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w! obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w! for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w!

0 0.19 0.82 0.31 0.35
w!

1 -1.27 7.99 232.37
w!

2 -25.43 -5321.83
w!

3 17.37 48568.31
w!

4 -231639.30
w!

5 640042.26
w!

6 -1061800.52
w!

7 1042400.18
w!

8 -557682.99
w!

9 125201.43

Overfitting and regularization

20

8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w!) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w! obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w! for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w!

0 0.19 0.82 0.31 0.35
w!

1 -1.27 7.99 232.37
w!

2 -25.43 -5321.83
w!

3 17.37 48568.31
w!

4 -231639.30
w!

5 640042.26
w!

6 -1061800.52
w!

7 1042400.18
w!

8 -557682.99
w!

9 125201.43

Overfitting and regularization

21

Overfitting: how to address it?

8 1. INTRODUCTION

Figure 1.5 Graphs of the root-mean-square
error, defined by (1.3), evaluated
on the training set and on an inde-
pendent test set for various values
of M .

M

E
R

M
S

0 3 6 9
0

0.5

1
Training
Test

For M = 9, the training set error goes to zero, as we might expect because
this polynomial contains 10 degrees of freedom corresponding to the 10 coefficients
w0, . . . , w9, and so can be tuned exactly to the 10 data points in the training set.
However, the test set error has become very large and, as we saw in Figure 1.4, the
corresponding function y(x,w!) exhibits wild oscillations.

This may seem paradoxical because a polynomial of given order contains all
lower order polynomials as special cases. The M = 9 polynomial is therefore capa-
ble of generating results at least as good as the M = 3 polynomial. Furthermore, we
might suppose that the best predictor of new data would be the function sin(2πx)
from which the data was generated (and we shall see later that this is indeed the
case). We know that a power series expansion of the function sin(2πx) contains
terms of all orders, so we might expect that results should improve monotonically as
we increase M .

We can gain some insight into the problem by examining the values of the co-
efficients w! obtained from polynomials of various order, as shown in Table 1.1.
We see that, as M increases, the magnitude of the coefficients typically gets larger.
In particular for the M = 9 polynomial, the coefficients have become finely tuned
to the data by developing large positive and negative values so that the correspond-

Table 1.1 Table of the coefficients w! for
polynomials of various order.
Observe how the typical mag-
nitude of the coefficients in-
creases dramatically as the or-
der of the polynomial increases.

M = 0 M = 1 M = 6 M = 9
w!

0 0.19 0.82 0.31 0.35
w!

1 -1.27 7.99 232.37
w!

2 -25.43 -5321.83
w!

3 17.37 48568.31
w!

4 -231639.30
w!

5 640042.26
w!

6 -1061800.52
w!

7 1042400.18
w!

8 -557682.99
w!

9 125201.43

We should constraint the weights from growing too big;

Weights are encouraged to decay toward 0, unless
supported by data!

Regularized least square

22

144 3. LINEAR MODELS FOR REGRESSION

in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards

144 3. LINEAR MODELS FOR REGRESSION

in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards

Regularization strength

144 3. LINEAR MODELS FOR REGRESSION

in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards

144 3. LINEAR MODELS FOR REGRESSION

in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards

• Set gradient to 0

23

Regularized least square

3.1. Linear Basis Function Models 145

q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

142 3. LINEAR MODELS FOR REGRESSION

Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =





φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)



 . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)

Go back to polynomial regression again

24

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w! for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w!

0 0.35 0.35 0.13
w!

1 232.37 4.74 -0.05
w!

2 -5321.83 -0.77 -0.06
w!

3 48568.31 -31.97 -0.05
w!

4 -231639.30 -3.89 -0.03
w!

5 640042.26 55.28 -0.02
w!

6 -1061800.52 41.32 -0.01
w!

7 1042400.18 -45.95 -0.00
w!

8 -557682.99 -91.53 0.00
w!

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.

E
R

M
S

ln λ−35 −30 −25 −20
0

0.5

1
Training
Test

144 3. LINEAR MODELS FOR REGRESSION

in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards

25

Go back to polynomial regression again
10 1. INTRODUCTION

x

t

ln λ = −18

0 1

−1

0

1

x

t

ln λ = 0

0 1

−1

0

1

Figure 1.7 Plots of M = 9 polynomials fitted to the data set shown in Figure 1.2 using the regularized error
function (1.4) for two values of the regularization parameter λ corresponding to ln λ = −18 and ln λ = 0. The
case of no regularizer, i.e., λ = 0, corresponding to ln λ = −∞, is shown at the bottom right of Figure 1.4.

may wish to use relatively complex and flexible models. One technique that is often
used to control the over-fitting phenomenon in such cases is that of regularization,
which involves adding a penalty term to the error function (1.2) in order to discourage
the coefficients from reaching large values. The simplest such penalty term takes the
form of a sum of squares of all of the coefficients, leading to a modified error function
of the form

Ẽ(w) =
1
2

N∑

n=1

{y(xn,w) − tn}2 +
λ

2
‖w‖2 (1.4)

where ‖w‖2 ≡ wTw = w2
0 + w2

1 + . . . + w2
M , and the coefficient λ governs the rel-

ative importance of the regularization term compared with the sum-of-squares error
term. Note that often the coefficient w0 is omitted from the regularizer because its
inclusion causes the results to depend on the choice of origin for the target variable
(Hastie et al., 2001), or it may be included but with its own regularization coefficient
(we shall discuss this topic in more detail in Section 5.5.1). Again, the error function
in (1.4) can be minimized exactly in closed form. Techniques such as this are knownExercise 1.2
in the statistics literature as shrinkage methods because they reduce the value of the
coefficients. The particular case of a quadratic regularizer is called ridge regres-
sion (Hoerl and Kennard, 1970). In the context of neural networks, this approach is
known as weight decay.

Figure 1.7 shows the results of fitting the polynomial of order M = 9 to the
same data set as before but now using the regularized error function given by (1.4).
We see that, for a value of lnλ = −18, the over-fitting has been suppressed and we
now obtain a much closer representation of the underlying function sin(2πx). If,
however, we use too large a value for λ then we again obtain a poor fit, as shown in
Figure 1.7 for lnλ = 0. The corresponding coefficients from the fitted polynomials
are given in Table 1.2, showing that regularization has the desired effect of reducing

More general regularizer

26

3.1. Linear Basis Function Models 145

q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w, and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

When q = 2, we go back to our quadratic regularizer

When q = 1, it is known as lasso: a classical sparse
regression approach; it turns out using lasso can
lead many weights to 0

In general, the smaller q leads to sparser models

Bayesian linear regression

• We assign a prior over the weights, which
corresponds to a regularizer

27

152 3. LINEAR MODELS FOR REGRESSION

data set leading to large variance. Conversely, a large value of λ pulls the weight
parameters towards zero leading to large bias.

Although the bias-variance decomposition may provide some interesting in-
sights into the model complexity issue from a frequentist perspective, it is of lim-
ited practical value, because the bias-variance decomposition is based on averages
with respect to ensembles of data sets, whereas in practice we have only the single
observed data set. If we had a large number of independent training sets of a given
size, we would be better off combining them into a single large training set, which
of course would reduce the level of over-fitting for a given model complexity.

Given these limitations, we turn in the next section to a Bayesian treatment of
linear basis function models, which not only provides powerful insights into the
issues of over-fitting but which also leads to practical techniques for addressing the
question model complexity.

3.3. Bayesian Linear Regression

In our discussion of maximum likelihood for setting the parameters of a linear re-
gression model, we have seen that the effective model complexity, governed by the
number of basis functions, needs to be controlled according to the size of the data
set. Adding a regularization term to the log likelihood function means the effective
model complexity can then be controlled by the value of the regularization coeffi-
cient, although the choice of the number and form of the basis functions is of course
still important in determining the overall behaviour of the model.

This leaves the issue of deciding the appropriate model complexity for the par-
ticular problem, which cannot be decided simply by maximizing the likelihood func-
tion, because this always leads to excessively complex models and over-fitting. In-
dependent hold-out data can be used to determine model complexity, as discussed
in Section 1.3, but this can be both computationally expensive and wasteful of valu-
able data. We therefore turn to a Bayesian treatment of linear regression, which will
avoid the over-fitting problem of maximum likelihood, and which will also lead to
automatic methods of determining model complexity using the training data alone.
Again, for simplicity we will focus on the case of a single target variable t. Ex-
tension to multiple target variables is straightforward and follows the discussion of
Section 3.1.5.

3.3.1 Parameter distribution
We begin our discussion of the Bayesian treatment of linear regression by in-

troducing a prior probability distribution over the model parameters w. For the mo-
ment, we shall treat the noise precision parameter β as a known constant. First note
that the likelihood function p(t|w) defined by (3.10) is the exponential of a quadratic
function of w. The corresponding conjugate prior is therefore given by a Gaussian
distribution of the form

p(w) = N (w|m0,S0) (3.48)

having mean m0 and covariance S0.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

7

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and

• Take a simple choice

28

Bayesian linear regression

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and

29

3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.

See how the
posterior changes

1st point

2nd point

20th point

<latexit sha1_base64="f85p6UXBuu2oSgJdWoSypkhZTcA=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahgpREinosevFYwX5AG8Jmu2mXbjZxd9Naan+HFw+KePXHePPfuG1z0NYHA4/3ZpiZ58ecKW3b31ZmZXVtfSO7mdva3tndy+8f1FWUSEJrJOKRbPpYUc4ErWmmOW3GkuLQ57Th92+mfmNApWKRuNejmLoh7goWMIK1kdy4+Pg09OwzNPScUy9fsEv2DGiZOCkpQIqql/9qdyKShFRowrFSLceOtTvGUjPC6STXThSNMenjLm0ZKnBIlTueHT1BJ0bpoCCSpoRGM/X3xBiHSo1C33SGWPfUojcV//NaiQ6u3DETcaKpIPNFQcKRjtA0AdRhkhLNR4ZgIpm5FZEelphok1POhOAsvrxM6ucl56JUvisXKtdpHFk4gmMoggOXUIFbqEINCDzAM7zCmzWwXqx362PemrHSmUP4A+vzBy9QkRM=</latexit>

p(x|w0, w1)
<latexit sha1_base64="PaMjKxOhE6ionk/jdamdzCqn+Ws=">AAAB+XicbVDJSgNBEK2JW4zbqEcvjUGIEMKMuB2DXjxGMAskw9DT6Uma9Cx09ySGMX/ixYMiXv0Tb/6NnWQOmvig4PFeFVX1vJgzqSzr28itrK6tb+Q3C1vbO7t75v5BQ0aJILROIh6Jlocl5SykdcUUp61YUBx4nDa9we3Ubw6pkCwKH9Q4pk6AeyHzGcFKS65pxqXx08i1ymjk2mX0eOqaRatizYCWiZ2RImSoueZXpxuRJKChIhxL2batWDkpFooRTieFTiJpjMkA92hb0xAHVDrp7PIJOtFKF/mR0BUqNFN/T6Q4kHIceLozwKovF72p+J/XTpR/7aQsjBNFQzJf5CccqQhNY0BdJihRfKwJJoLpWxHpY4GJ0mEVdAj24svLpHFWsS8rF/fnxepNFkcejuAYSmDDFVThDmpQBwJDeIZXeDNS48V4Nz7mrTkjmzmEPzA+fwBOGpIo</latexit>

p(y|w0, w1, x)

• Gaussian prior corresponds to quadratic
regularization; Laplace prior lasso

• In general

30

Bayesian linear regression
156 3. LINEAR MODELS FOR REGRESSION

posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q "= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,

q = 1, Laplace’s prior
q = 2, Gaussian

Predictive distribution

• We want to integrate all values of w into prediction

31

156 3. LINEAR MODELS FOR REGRESSION

posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q "= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,

156 3. LINEAR MODELS FOR REGRESSION

posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q "= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,

156 3. LINEAR MODELS FOR REGRESSION

posterior distribution would become a delta function centred on the true parameter
values, shown by the white cross.

Other forms of prior over the parameters can be considered. For instance, we
can generalize the Gaussian prior to give

p(w|α) =
[

q

2

(α

2

)1/q 1
Γ(1/q)

]M

exp

(
−α

2

M∑

j=1

|wj |q
)

(3.56)

in which q = 2 corresponds to the Gaussian distribution, and only in this case is the
prior conjugate to the likelihood function (3.10). Finding the maximum of the poste-
rior distribution over w corresponds to minimization of the regularized error function
(3.29). In the case of the Gaussian prior, the mode of the posterior distribution was
equal to the mean, although this will no longer hold if q "= 2.

3.3.2 Predictive distribution
In practice, we are not usually interested in the value of w itself but rather in

making predictions of t for new values of x. This requires that we evaluate the
predictive distribution defined by

p(t|t, α, β) =
∫

p(t|w, β)p(w|t, α, β) dw (3.57)

in which t is the vector of target values from the training set, and we have omitted the
corresponding input vectors from the right-hand side of the conditioning statements
to simplify the notation. The conditional distribution p(t|x,w, β) of the target vari-
able is given by (3.8), and the posterior weight distribution is given by (3.49). We
see that (3.57) involves the convolution of two Gaussian distributions, and so making
use of the result (2.115) from Section 8.1.4, we see that the predictive distribution
takes the formExercise 3.10

p(t|x, t, α, β) = N (t|mT
Nφ(x), σ2

N (x)) (3.58)

where the variance σ2
N (x) of the predictive distribution is given by

σ2
N (x) =

1
β

+ φ(x)TSNφ(x). (3.59)

The first term in (3.59) represents the noise on the data whereas the second term
reflects the uncertainty associated with the parameters w. Because the noise process
and the distribution of w are independent Gaussians, their variances are additive.
Note that, as additional data points are observed, the posterior distribution becomes
narrower. As a consequence it can be shown (Qazaz et al., 1997) that σ2

N+1(x) !
σ2

N (x). In the limit N → ∞, the second term in (3.59) goes to zero, and the varianceExercise 3.11
of the predictive distribution arises solely from the additive noise governed by the
parameter β.

As an illustration of the predictive distribution for Bayesian linear regression
models, let us return to the synthetic sinusoidal data set of Section 1.1. In Figure 3.8,

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

7

Predictive distribution

32

3.3. Bayesian Linear Regression 157

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Figure 3.8 Examples of the predictive distribution (3.58) for a model consisting of 9 Gaussian basis functions
of the form (3.4) using the synthetic sinusoidal data set of Section 1.1. See the text for a detailed discussion.

we fit a model comprising a linear combination of Gaussian basis functions to data
sets of various sizes and then look at the corresponding posterior distributions. Here
the green curves correspond to the function sin(2πx) from which the data points
were generated (with the addition of Gaussian noise). Data sets of size N = 1,
N = 2, N = 4, and N = 25 are shown in the four plots by the blue circles. For
each plot, the red curve shows the mean of the corresponding Gaussian predictive
distribution, and the red shaded region spans one standard deviation either side of
the mean. Note that the predictive uncertainty depends on x and is smallest in the
neighbourhood of the data points. Also note that the level of uncertainty decreases
as more data points are observed.

The plots in Figure 3.8 only show the point-wise predictive variance as a func-
tion of x. In order to gain insight into the covariance between the predictions at
different values of x, we can draw samples from the posterior distribution over w,
and then plot the corresponding functions y(x,w), as shown in Figure 3.9.

Learn a sinusoidal function with 9 Gaussian basis functions

t(x,w) using samples from the posterior

33

158 3. LINEAR MODELS FOR REGRESSION

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1

Figure 3.9 Plots of the function y(x,w) using samples from the posterior distributions over w corresponding to
the plots in Figure 3.8.

If we used localized basis functions such as Gaussians, then in regions away
from the basis function centres, the contribution from the second term in the predic-
tive variance (3.59) will go to zero, leaving only the noise contribution β−1. Thus,
the model becomes very confident in its predictions when extrapolating outside the
region occupied by the basis functions, which is generally an undesirable behaviour.
This problem can be avoided by adopting an alternative Bayesian approach to re-
gression known as a Gaussian process.Section 6.4

Note that, if both w and β are treated as unknown, then we can introduce a
conjugate prior distribution p(w, β) that, from the discussion in Section 2.3.6, will
be given by a Gaussian-gamma distribution (Denison et al., 2002). In this case, theExercise 3.12
predictive distribution is a Student’s t-distribution.Exercise 3.13

p(w|t)
<latexit sha1_base64="TKuwvro52zgow3Ce0lSlwNq6gb0=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KUgVdFt24rGAv0IYymU7aoZMLMxOlxLjxVdy4UMStb+HOt3HSRtDWHwY+/nMOc87vRpxJZVlfxsLi0vLKamGtuL6xubVt7uw2ZRgLQhsk5KFou1hSzgLaUExx2o4Exb7LacsdXWb11i0VkoXBjRpH1PHxIGAeI1hpq2fuR+Wuj9XQ9ZK79P4HVXrcM0tWxZoIzYOdQwly1XvmZ7cfktingSIcS9mxrUg5CRaKEU7TYjeWNMJkhAe0ozHAPpVOMrkgRUfa6SMvFPoFCk3c3xMJ9qUc+67uzFaUs7XM/K/WiZV37iQsiGJFAzL9yIs5UiHK4kB9JihRfKwBE8H0rogMscBE6dCKOgR79uR5aFYr9kmlen1aql3kcRTgAA6hDDacQQ2uoA4NIPAAT/ACr8aj8Wy8Ge/T1gUjn9mDPzI+vgEhIZdT</latexit>

Bayesian model comparison

• Suppose we want to compare a set of models {M1, …,
ML} .

• The data is generated by one model, which we are
not sure. We express the prior by p(Mi)

• Given the training data D, we wish to evaluate

34

3.4. Bayesian Model Comparison 161

be simply ŷ(x) = 1, from which we obtain (3.64). Note that the kernel function can
be negative as well as positive, so although it satisfies a summation constraint, the
corresponding predictions are not necessarily convex combinations of the training
set target variables.

Finally, we note that the equivalent kernel (3.62) satisfies an important property
shared by kernel functions in general, namely that it can be expressed in the form anChapter 6
inner product with respect to a vector ψ(x) of nonlinear functions, so that

k(x, z) = ψ(x)Tψ(z) (3.65)

where ψ(x) = β1/2S1/2
N φ(x).

3.4. Bayesian Model Comparison

In Chapter 1, we highlighted the problem of over-fitting as well as the use of cross-
validation as a technique for setting the values of regularization parameters or for
choosing between alternative models. Here we consider the problem of model se-
lection from a Bayesian perspective. In this section, our discussion will be very
general, and then in Section 3.5 we shall see how these ideas can be applied to the
determination of regularization parameters in linear regression.

As we shall see, the over-fitting associated with maximum likelihood can be
avoided by marginalizing (summing or integrating) over the model parameters in-
stead of making point estimates of their values. Models can then be compared di-
rectly on the training data, without the need for a validation set. This allows all
available data to be used for training and avoids the multiple training runs for each
model associated with cross-validation. It also allows multiple complexity parame-
ters to be determined simultaneously as part of the training process. For example,
in Chapter 7 we shall introduce the relevance vector machine, which is a Bayesian
model having one complexity parameter for every training data point.

The Bayesian view of model comparison simply involves the use of probabilities
to represent uncertainty in the choice of model, along with a consistent application
of the sum and product rules of probability. Suppose we wish to compare a set of L
models {Mi} where i = 1, . . . , L. Here a model refers to a probability distribution
over the observed data D. In the case of the polynomial curve-fitting problem, the
distribution is defined over the set of target values t, while the set of input values X
is assumed to be known. Other types of model define a joint distributions over X
and t. We shall suppose that the data is generated from one of these models but weSection 1.5.4
are uncertain which one. Our uncertainty is expressed through a prior probability
distribution p(Mi). Given a training set D, we then wish to evaluate the posterior
distribution

p(Mi|D) ∝ p(Mi)p(D|Mi). (3.66)

The prior allows us to express a preference for different models. Let us simply
assume that all models are given equal prior probability. The interesting term is
the model evidence p(D|Mi) which expresses the preference shown by the data forModel evidence

Bayesian model comparison

35

• Bayes factor

162 3. LINEAR MODELS FOR REGRESSION

different models, and we shall examine this term in more detail shortly. The model
evidence is sometimes also called the marginal likelihood because it can be viewed
as a likelihood function over the space of models, in which the parameters have been
marginalized out. The ratio of model evidences p(D|Mi)/p(D|Mj) for two models
is known as a Bayes factor (Kass and Raftery, 1995).

Once we know the posterior distribution over models, the predictive distribution
is given, from the sum and product rules, by

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)p(Mi|D). (3.67)

This is an example of a mixture distribution in which the overall predictive distribu-
tion is obtained by averaging the predictive distributions p(t|x,Mi,D) of individual
models, weighted by the posterior probabilities p(Mi|D) of those models. For in-
stance, if we have two models that are a-posteriori equally likely and one predicts
a narrow distribution around t = a while the other predicts a narrow distribution
around t = b, the overall predictive distribution will be a bimodal distribution with
modes at t = a and t = b, not a single model at t = (a + b)/2.

A simple approximation to model averaging is to use the single most probable
model alone to make predictions. This is known as model selection.

For a model governed by a set of parameters w, the model evidence is given,
from the sum and product rules of probability, by

p(D|Mi) =
∫

p(D|w,Mi)p(w|Mi) dw. (3.68)

From a sampling perspective, the marginal likelihood can be viewed as the proba-Chapter 11
bility of generating the data set D from a model whose parameters are sampled at
random from the prior. It is also interesting to note that the evidence is precisely the
normalizing term that appears in the denominator in Bayes’ theorem when evaluating
the posterior distribution over parameters because

p(w|D,Mi) =
p(D|w,Mi)p(w|Mi)

p(D|Mi)
. (3.69)

We can obtain some insight into the model evidence by making a simple approx-
imation to the integral over parameters. Consider first the case of a model having a
single parameter w. The posterior distribution over parameters is proportional to
p(D|w)p(w), where we omit the dependence on the model Mi to keep the notation
uncluttered. If we assume that the posterior distribution is sharply peaked around the
most probable value wMAP, with width ∆wposterior, then we can approximate the in-
tegral by the value of the integrand at its maximum times the width of the peak. If we
further assume that the prior is flat with width ∆wprior so that p(w) = 1/∆wprior,
then we have

p(D) =
∫

p(D|w)p(w) dw ! p(D|wMAP)
∆wposterior

∆wprior
(3.70)

• Model averaging: Bayesian version of ensemble

162 3. LINEAR MODELS FOR REGRESSION

different models, and we shall examine this term in more detail shortly. The model
evidence is sometimes also called the marginal likelihood because it can be viewed
as a likelihood function over the space of models, in which the parameters have been
marginalized out. The ratio of model evidences p(D|Mi)/p(D|Mj) for two models
is known as a Bayes factor (Kass and Raftery, 1995).

Once we know the posterior distribution over models, the predictive distribution
is given, from the sum and product rules, by

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)p(Mi|D). (3.67)

This is an example of a mixture distribution in which the overall predictive distribu-
tion is obtained by averaging the predictive distributions p(t|x,Mi,D) of individual
models, weighted by the posterior probabilities p(Mi|D) of those models. For in-
stance, if we have two models that are a-posteriori equally likely and one predicts
a narrow distribution around t = a while the other predicts a narrow distribution
around t = b, the overall predictive distribution will be a bimodal distribution with
modes at t = a and t = b, not a single model at t = (a + b)/2.

A simple approximation to model averaging is to use the single most probable
model alone to make predictions. This is known as model selection.

For a model governed by a set of parameters w, the model evidence is given,
from the sum and product rules of probability, by

p(D|Mi) =
∫

p(D|w,Mi)p(w|Mi) dw. (3.68)

From a sampling perspective, the marginal likelihood can be viewed as the proba-Chapter 11
bility of generating the data set D from a model whose parameters are sampled at
random from the prior. It is also interesting to note that the evidence is precisely the
normalizing term that appears in the denominator in Bayes’ theorem when evaluating
the posterior distribution over parameters because

p(w|D,Mi) =
p(D|w,Mi)p(w|Mi)

p(D|Mi)
. (3.69)

We can obtain some insight into the model evidence by making a simple approx-
imation to the integral over parameters. Consider first the case of a model having a
single parameter w. The posterior distribution over parameters is proportional to
p(D|w)p(w), where we omit the dependence on the model Mi to keep the notation
uncluttered. If we assume that the posterior distribution is sharply peaked around the
most probable value wMAP, with width ∆wposterior, then we can approximate the in-
tegral by the value of the integrand at its maximum times the width of the peak. If we
further assume that the prior is flat with width ∆wprior so that p(w) = 1/∆wprior,
then we have

p(D) =
∫

p(D|w)p(w) dw ! p(D|wMAP)
∆wposterior

∆wprior
(3.70)

• Model selection: choose the most probable model
alone to make prediction

Crude evidence approximation

• Assume the posterior is centered around its mode
and flat prior

36

162 3. LINEAR MODELS FOR REGRESSION

different models, and we shall examine this term in more detail shortly. The model
evidence is sometimes also called the marginal likelihood because it can be viewed
as a likelihood function over the space of models, in which the parameters have been
marginalized out. The ratio of model evidences p(D|Mi)/p(D|Mj) for two models
is known as a Bayes factor (Kass and Raftery, 1995).

Once we know the posterior distribution over models, the predictive distribution
is given, from the sum and product rules, by

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)p(Mi|D). (3.67)

This is an example of a mixture distribution in which the overall predictive distribu-
tion is obtained by averaging the predictive distributions p(t|x,Mi,D) of individual
models, weighted by the posterior probabilities p(Mi|D) of those models. For in-
stance, if we have two models that are a-posteriori equally likely and one predicts
a narrow distribution around t = a while the other predicts a narrow distribution
around t = b, the overall predictive distribution will be a bimodal distribution with
modes at t = a and t = b, not a single model at t = (a + b)/2.

A simple approximation to model averaging is to use the single most probable
model alone to make predictions. This is known as model selection.

For a model governed by a set of parameters w, the model evidence is given,
from the sum and product rules of probability, by

p(D|Mi) =
∫

p(D|w,Mi)p(w|Mi) dw. (3.68)

From a sampling perspective, the marginal likelihood can be viewed as the proba-Chapter 11
bility of generating the data set D from a model whose parameters are sampled at
random from the prior. It is also interesting to note that the evidence is precisely the
normalizing term that appears in the denominator in Bayes’ theorem when evaluating
the posterior distribution over parameters because

p(w|D,Mi) =
p(D|w,Mi)p(w|Mi)

p(D|Mi)
. (3.69)

We can obtain some insight into the model evidence by making a simple approx-
imation to the integral over parameters. Consider first the case of a model having a
single parameter w. The posterior distribution over parameters is proportional to
p(D|w)p(w), where we omit the dependence on the model Mi to keep the notation
uncluttered. If we assume that the posterior distribution is sharply peaked around the
most probable value wMAP, with width ∆wposterior, then we can approximate the in-
tegral by the value of the integrand at its maximum times the width of the peak. If we
further assume that the prior is flat with width ∆wprior so that p(w) = 1/∆wprior,
then we have

p(D) =
∫

p(D|w)p(w) dw ! p(D|wMAP)
∆wposterior

∆wprior
(3.70)

3.4. Bayesian Model Comparison 163

Figure 3.12 We can obtain a rough approximation to
the model evidence if we assume that
the posterior distribution over parame-
ters is sharply peaked around its mode
wMAP.

∆wposterior

∆wprior

wMAP w

and so taking logs we obtain

ln p(D) ! ln p(D|wMAP) + ln
(

∆wposterior

∆wprior

)
. (3.71)

This approximation is illustrated in Figure 3.12. The first term represents the fit to
the data given by the most probable parameter values, and for a flat prior this would
correspond to the log likelihood. The second term penalizes the model according to
its complexity. Because ∆wposterior < ∆wprior this term is negative, and it increases
in magnitude as the ratio ∆wposterior/∆wprior gets smaller. Thus, if parameters are
finely tuned to the data in the posterior distribution, then the penalty term is large.

For a model having a set of M parameters, we can make a similar approximation
for each parameter in turn. Assuming that all parameters have the same ratio of
∆wposterior/∆wprior, we obtain

ln p(D) ! ln p(D|wMAP) + M ln
(

∆wposterior

∆wprior

)
. (3.72)

Thus, in this very simple approximation, the size of the complexity penalty increases
linearly with the number M of adaptive parameters in the model. As we increase
the complexity of the model, the first term will typically decrease, because a more
complex model is better able to fit the data, whereas the second term will increase
due to the dependence on M . The optimal model complexity, as determined by
the maximum evidence, will be given by a trade-off between these two competing
terms. We shall later develop a more refined version of this approximation, based on
a Gaussian approximation to the posterior distribution.Section 4.4.1

We can gain further insight into Bayesian model comparison and understand
how the marginal likelihood can favour models of intermediate complexity by con-
sidering Figure 3.13. Here the horizontal axis is a one-dimensional representation
of the space of possible data sets, so that each point on this axis corresponds to a
specific data set. We now consider three models M1, M2 and M3 of successively
increasing complexity. Imagine running these models generatively to produce exam-
ple data sets, and then looking at the distribution of data sets that result. Any given

Crude evidence approximation

• Assume the posterior is centered around its mode
and flat prior

37

162 3. LINEAR MODELS FOR REGRESSION

different models, and we shall examine this term in more detail shortly. The model
evidence is sometimes also called the marginal likelihood because it can be viewed
as a likelihood function over the space of models, in which the parameters have been
marginalized out. The ratio of model evidences p(D|Mi)/p(D|Mj) for two models
is known as a Bayes factor (Kass and Raftery, 1995).

Once we know the posterior distribution over models, the predictive distribution
is given, from the sum and product rules, by

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)p(Mi|D). (3.67)

This is an example of a mixture distribution in which the overall predictive distribu-
tion is obtained by averaging the predictive distributions p(t|x,Mi,D) of individual
models, weighted by the posterior probabilities p(Mi|D) of those models. For in-
stance, if we have two models that are a-posteriori equally likely and one predicts
a narrow distribution around t = a while the other predicts a narrow distribution
around t = b, the overall predictive distribution will be a bimodal distribution with
modes at t = a and t = b, not a single model at t = (a + b)/2.

A simple approximation to model averaging is to use the single most probable
model alone to make predictions. This is known as model selection.

For a model governed by a set of parameters w, the model evidence is given,
from the sum and product rules of probability, by

p(D|Mi) =
∫

p(D|w,Mi)p(w|Mi) dw. (3.68)

From a sampling perspective, the marginal likelihood can be viewed as the proba-Chapter 11
bility of generating the data set D from a model whose parameters are sampled at
random from the prior. It is also interesting to note that the evidence is precisely the
normalizing term that appears in the denominator in Bayes’ theorem when evaluating
the posterior distribution over parameters because

p(w|D,Mi) =
p(D|w,Mi)p(w|Mi)

p(D|Mi)
. (3.69)

We can obtain some insight into the model evidence by making a simple approx-
imation to the integral over parameters. Consider first the case of a model having a
single parameter w. The posterior distribution over parameters is proportional to
p(D|w)p(w), where we omit the dependence on the model Mi to keep the notation
uncluttered. If we assume that the posterior distribution is sharply peaked around the
most probable value wMAP, with width ∆wposterior, then we can approximate the in-
tegral by the value of the integrand at its maximum times the width of the peak. If we
further assume that the prior is flat with width ∆wprior so that p(w) = 1/∆wprior,
then we have

p(D) =
∫

p(D|w)p(w) dw ! p(D|wMAP)
∆wposterior

∆wprior
(3.70)

3.4. Bayesian Model Comparison 163

Figure 3.12 We can obtain a rough approximation to
the model evidence if we assume that
the posterior distribution over parame-
ters is sharply peaked around its mode
wMAP.

∆wposterior

∆wprior

wMAP w

and so taking logs we obtain

ln p(D) ! ln p(D|wMAP) + ln
(

∆wposterior

∆wprior

)
. (3.71)

This approximation is illustrated in Figure 3.12. The first term represents the fit to
the data given by the most probable parameter values, and for a flat prior this would
correspond to the log likelihood. The second term penalizes the model according to
its complexity. Because ∆wposterior < ∆wprior this term is negative, and it increases
in magnitude as the ratio ∆wposterior/∆wprior gets smaller. Thus, if parameters are
finely tuned to the data in the posterior distribution, then the penalty term is large.

For a model having a set of M parameters, we can make a similar approximation
for each parameter in turn. Assuming that all parameters have the same ratio of
∆wposterior/∆wprior, we obtain

ln p(D) ! ln p(D|wMAP) + M ln
(

∆wposterior

∆wprior

)
. (3.72)

Thus, in this very simple approximation, the size of the complexity penalty increases
linearly with the number M of adaptive parameters in the model. As we increase
the complexity of the model, the first term will typically decrease, because a more
complex model is better able to fit the data, whereas the second term will increase
due to the dependence on M . The optimal model complexity, as determined by
the maximum evidence, will be given by a trade-off between these two competing
terms. We shall later develop a more refined version of this approximation, based on
a Gaussian approximation to the posterior distribution.Section 4.4.1

We can gain further insight into Bayesian model comparison and understand
how the marginal likelihood can favour models of intermediate complexity by con-
sidering Figure 3.13. Here the horizontal axis is a one-dimensional representation
of the space of possible data sets, so that each point on this axis corresponds to a
specific data set. We now consider three models M1, M2 and M3 of successively
increasing complexity. Imagine running these models generatively to produce exam-
ple data sets, and then looking at the distribution of data sets that result. Any given

162 3. LINEAR MODELS FOR REGRESSION

different models, and we shall examine this term in more detail shortly. The model
evidence is sometimes also called the marginal likelihood because it can be viewed
as a likelihood function over the space of models, in which the parameters have been
marginalized out. The ratio of model evidences p(D|Mi)/p(D|Mj) for two models
is known as a Bayes factor (Kass and Raftery, 1995).

Once we know the posterior distribution over models, the predictive distribution
is given, from the sum and product rules, by

p(t|x,D) =
L∑

i=1

p(t|x,Mi,D)p(Mi|D). (3.67)

This is an example of a mixture distribution in which the overall predictive distribu-
tion is obtained by averaging the predictive distributions p(t|x,Mi,D) of individual
models, weighted by the posterior probabilities p(Mi|D) of those models. For in-
stance, if we have two models that are a-posteriori equally likely and one predicts
a narrow distribution around t = a while the other predicts a narrow distribution
around t = b, the overall predictive distribution will be a bimodal distribution with
modes at t = a and t = b, not a single model at t = (a + b)/2.

A simple approximation to model averaging is to use the single most probable
model alone to make predictions. This is known as model selection.

For a model governed by a set of parameters w, the model evidence is given,
from the sum and product rules of probability, by

p(D|Mi) =
∫

p(D|w,Mi)p(w|Mi) dw. (3.68)

From a sampling perspective, the marginal likelihood can be viewed as the proba-Chapter 11
bility of generating the data set D from a model whose parameters are sampled at
random from the prior. It is also interesting to note that the evidence is precisely the
normalizing term that appears in the denominator in Bayes’ theorem when evaluating
the posterior distribution over parameters because

p(w|D,Mi) =
p(D|w,Mi)p(w|Mi)

p(D|Mi)
. (3.69)

We can obtain some insight into the model evidence by making a simple approx-
imation to the integral over parameters. Consider first the case of a model having a
single parameter w. The posterior distribution over parameters is proportional to
p(D|w)p(w), where we omit the dependence on the model Mi to keep the notation
uncluttered. If we assume that the posterior distribution is sharply peaked around the
most probable value wMAP, with width ∆wposterior, then we can approximate the in-
tegral by the value of the integrand at its maximum times the width of the peak. If we
further assume that the prior is flat with width ∆wprior so that p(w) = 1/∆wprior,
then we have

p(D) =
∫

p(D|w)p(w) dw ! p(D|wMAP)
∆wposterior

∆wprior
(3.70)

Evidence penalizes over-complex models

38

3.4. Bayesian Model Comparison 163

Figure 3.12 We can obtain a rough approximation to
the model evidence if we assume that
the posterior distribution over parame-
ters is sharply peaked around its mode
wMAP.

∆wposterior

∆wprior

wMAP w

and so taking logs we obtain

ln p(D) ! ln p(D|wMAP) + ln
(

∆wposterior

∆wprior

)
. (3.71)

This approximation is illustrated in Figure 3.12. The first term represents the fit to
the data given by the most probable parameter values, and for a flat prior this would
correspond to the log likelihood. The second term penalizes the model according to
its complexity. Because ∆wposterior < ∆wprior this term is negative, and it increases
in magnitude as the ratio ∆wposterior/∆wprior gets smaller. Thus, if parameters are
finely tuned to the data in the posterior distribution, then the penalty term is large.

For a model having a set of M parameters, we can make a similar approximation
for each parameter in turn. Assuming that all parameters have the same ratio of
∆wposterior/∆wprior, we obtain

ln p(D) ! ln p(D|wMAP) + M ln
(

∆wposterior

∆wprior

)
. (3.72)

Thus, in this very simple approximation, the size of the complexity penalty increases
linearly with the number M of adaptive parameters in the model. As we increase
the complexity of the model, the first term will typically decrease, because a more
complex model is better able to fit the data, whereas the second term will increase
due to the dependence on M . The optimal model complexity, as determined by
the maximum evidence, will be given by a trade-off between these two competing
terms. We shall later develop a more refined version of this approximation, based on
a Gaussian approximation to the posterior distribution.Section 4.4.1

We can gain further insight into Bayesian model comparison and understand
how the marginal likelihood can favour models of intermediate complexity by con-
sidering Figure 3.13. Here the horizontal axis is a one-dimensional representation
of the space of possible data sets, so that each point on this axis corresponds to a
specific data set. We now consider three models M1, M2 and M3 of successively
increasing complexity. Imagine running these models generatively to produce exam-
ple data sets, and then looking at the distribution of data sets that result. Any given

Given M parameters and assume the same ratio

3.4. Bayesian Model Comparison 163

Figure 3.12 We can obtain a rough approximation to
the model evidence if we assume that
the posterior distribution over parame-
ters is sharply peaked around its mode
wMAP.

∆wposterior

∆wprior

wMAP w

and so taking logs we obtain

ln p(D) ! ln p(D|wMAP) + ln
(

∆wposterior

∆wprior

)
. (3.71)

This approximation is illustrated in Figure 3.12. The first term represents the fit to
the data given by the most probable parameter values, and for a flat prior this would
correspond to the log likelihood. The second term penalizes the model according to
its complexity. Because ∆wposterior < ∆wprior this term is negative, and it increases
in magnitude as the ratio ∆wposterior/∆wprior gets smaller. Thus, if parameters are
finely tuned to the data in the posterior distribution, then the penalty term is large.

For a model having a set of M parameters, we can make a similar approximation
for each parameter in turn. Assuming that all parameters have the same ratio of
∆wposterior/∆wprior, we obtain

ln p(D) ! ln p(D|wMAP) + M ln
(

∆wposterior

∆wprior

)
. (3.72)

Thus, in this very simple approximation, the size of the complexity penalty increases
linearly with the number M of adaptive parameters in the model. As we increase
the complexity of the model, the first term will typically decrease, because a more
complex model is better able to fit the data, whereas the second term will increase
due to the dependence on M . The optimal model complexity, as determined by
the maximum evidence, will be given by a trade-off between these two competing
terms. We shall later develop a more refined version of this approximation, based on
a Gaussian approximation to the posterior distribution.Section 4.4.1

We can gain further insight into Bayesian model comparison and understand
how the marginal likelihood can favour models of intermediate complexity by con-
sidering Figure 3.13. Here the horizontal axis is a one-dimensional representation
of the space of possible data sets, so that each point on this axis corresponds to a
specific data set. We now consider three models M1, M2 and M3 of successively
increasing complexity. Imagine running these models generatively to produce exam-
ple data sets, and then looking at the distribution of data sets that result. Any given

The larger M, the more complex the model, the better fit of the
data (1st term), the smaller the second term

<0

<1

• Maximizing evidence naturally leads to a trade-off
between data fitting and model complexity

39

Evidence penalizes over-complex models

164 3. LINEAR MODELS FOR REGRESSION

Figure 3.13 Schematic illustration of the
distribution of data sets for
three models of different com-
plexity, in which M1 is the
simplest and M3 is the most
complex. Note that the dis-
tributions are normalized. In
this example, for the partic-
ular observed data set D0,
the model M2 with intermedi-
ate complexity has the largest
evidence.

p(D)

DD0

M1

M2

M3

model can generate a variety of different data sets since the parameters are governed
by a prior probability distribution, and for any choice of the parameters there may
be random noise on the target variables. To generate a particular data set from a spe-
cific model, we first choose the values of the parameters from their prior distribution
p(w), and then for these parameter values we sample the data from p(D|w). A sim-
ple model (for example, based on a first order polynomial) has little variability and
so will generate data sets that are fairly similar to each other. Its distribution p(D)
is therefore confined to a relatively small region of the horizontal axis. By contrast,
a complex model (such as a ninth order polynomial) can generate a great variety of
different data sets, and so its distribution p(D) is spread over a large region of the
space of data sets. Because the distributions p(D|Mi) are normalized, we see that
the particular data set D0 can have the highest value of the evidence for the model
of intermediate complexity. Essentially, the simpler model cannot fit the data well,
whereas the more complex model spreads its predictive probability over too broad a
range of data sets and so assigns relatively small probability to any one of them.

Implicit in the Bayesian model comparison framework is the assumption that
the true distribution from which the data are generated is contained within the set of
models under consideration. Provided this is so, we can show that Bayesian model
comparison will on average favour the correct model. To see this, consider two
models M1 and M2 in which the truth corresponds to M1. For a given finite data
set, it is possible for the Bayes factor to be larger for the incorrect model. However, if
we average the Bayes factor over the distribution of data sets, we obtain the expected
Bayes factor in the form

∫
p(D|M1) ln

p(D|M1)
p(D|M2)

dD (3.73)

where the average has been taken with respect to the true distribution of the data.
This quantity is an example of the Kullback-Leibler divergence and satisfies the prop-Section 1.6.1
erty of always being positive unless the two distributions are equal in which case it
is zero. Thus on average the Bayes factor will always favour the correct model.

We have seen that the Bayesian framework avoids the problem of over-fitting
and allows models to be compared on the basis of the training data alone. However,

Evidence approximation & empirical Bayes

• Approximating the predictive distribution by
maximizing the evidence

40

3.5. The Evidence Approximation 165

a Bayesian approach, like any approach to pattern recognition, needs to make as-
sumptions about the form of the model, and if these are invalid then the results can
be misleading. In particular, we see from Figure 3.12 that the model evidence can
be sensitive to many aspects of the prior, such as the behaviour in the tails. Indeed,
the evidence is not defined if the prior is improper, as can be seen by noting that
an improper prior has an arbitrary scaling factor (in other words, the normalization
coefficient is not defined because the distribution cannot be normalized). If we con-
sider a proper prior and then take a suitable limit in order to obtain an improper prior
(for example, a Gaussian prior in which we take the limit of infinite variance) then
the evidence will go to zero, as can be seen from (3.70) and Figure 3.12. It may,
however, be possible to consider the evidence ratio between two models first and
then take a limit to obtain a meaningful answer.

In a practical application, therefore, it will be wise to keep aside an independent
test set of data on which to evaluate the overall performance of the final system.

3.5. The Evidence Approximation

In a fully Bayesian treatment of the linear basis function model, we would intro-
duce prior distributions over the hyperparameters α and β and make predictions by
marginalizing with respect to these hyperparameters as well as with respect to the
parameters w. However, although we can integrate analytically over either w or
over the hyperparameters, the complete marginalization over all of these variables
is analytically intractable. Here we discuss an approximation in which we set the
hyperparameters to specific values determined by maximizing the marginal likeli-
hood function obtained by first integrating over the parameters w. This framework
is known in the statistics literature as empirical Bayes (Bernardo and Smith, 1994;
Gelman et al., 2004), or type 2 maximum likelihood (Berger, 1985), or generalized
maximum likelihood (Wahba, 1975), and in the machine learning literature is also
called the evidence approximation (Gull, 1989; MacKay, 1992a).

If we introduce hyperpriors over α and β, the predictive distribution is obtained
by marginalizing over w, α and β so that

p(t|t) =
∫∫∫

p(t|w, β)p(w|t, α, β)p(α, β|t) dw dα dβ (3.74)

where p(t|w, β) is given by (3.8) and p(w|t, α, β) is given by (3.49) with mN and
SN defined by (3.53) and (3.54) respectively. Here we have omitted the dependence
on the input variable x to keep the notation uncluttered. If the posterior distribution
p(α, β|t) is sharply peaked around values α̂ and β̂, then the predictive distribution is
obtained simply by marginalizing over w in which α and β are fixed to the values α̂
and β̂, so that

p(t|t) ! p(t|t, α̂, β̂) =
∫

p(t|w, β̂)p(w|t, α̂, β̂) dw. (3.75)

3.5. The Evidence Approximation 165

a Bayesian approach, like any approach to pattern recognition, needs to make as-
sumptions about the form of the model, and if these are invalid then the results can
be misleading. In particular, we see from Figure 3.12 that the model evidence can
be sensitive to many aspects of the prior, such as the behaviour in the tails. Indeed,
the evidence is not defined if the prior is improper, as can be seen by noting that
an improper prior has an arbitrary scaling factor (in other words, the normalization
coefficient is not defined because the distribution cannot be normalized). If we con-
sider a proper prior and then take a suitable limit in order to obtain an improper prior
(for example, a Gaussian prior in which we take the limit of infinite variance) then
the evidence will go to zero, as can be seen from (3.70) and Figure 3.12. It may,
however, be possible to consider the evidence ratio between two models first and
then take a limit to obtain a meaningful answer.

In a practical application, therefore, it will be wise to keep aside an independent
test set of data on which to evaluate the overall performance of the final system.

3.5. The Evidence Approximation

In a fully Bayesian treatment of the linear basis function model, we would intro-
duce prior distributions over the hyperparameters α and β and make predictions by
marginalizing with respect to these hyperparameters as well as with respect to the
parameters w. However, although we can integrate analytically over either w or
over the hyperparameters, the complete marginalization over all of these variables
is analytically intractable. Here we discuss an approximation in which we set the
hyperparameters to specific values determined by maximizing the marginal likeli-
hood function obtained by first integrating over the parameters w. This framework
is known in the statistics literature as empirical Bayes (Bernardo and Smith, 1994;
Gelman et al., 2004), or type 2 maximum likelihood (Berger, 1985), or generalized
maximum likelihood (Wahba, 1975), and in the machine learning literature is also
called the evidence approximation (Gull, 1989; MacKay, 1992a).

If we introduce hyperpriors over α and β, the predictive distribution is obtained
by marginalizing over w, α and β so that

p(t|t) =
∫∫∫

p(t|w, β)p(w|t, α, β)p(α, β|t) dw dα dβ (3.74)

where p(t|w, β) is given by (3.8) and p(w|t, α, β) is given by (3.49) with mN and
SN defined by (3.53) and (3.54) respectively. Here we have omitted the dependence
on the input variable x to keep the notation uncluttered. If the posterior distribution
p(α, β|t) is sharply peaked around values α̂ and β̂, then the predictive distribution is
obtained simply by marginalizing over w in which α and β are fixed to the values α̂
and β̂, so that

p(t|t) ! p(t|t, α̂, β̂) =
∫

p(t|w, β̂)p(w|t, α̂, β̂) dw. (3.75)

where the hyperparameters are obtained by
maximizing the evidence .

3.5. The Evidence Approximation 165

a Bayesian approach, like any approach to pattern recognition, needs to make as-
sumptions about the form of the model, and if these are invalid then the results can
be misleading. In particular, we see from Figure 3.12 that the model evidence can
be sensitive to many aspects of the prior, such as the behaviour in the tails. Indeed,
the evidence is not defined if the prior is improper, as can be seen by noting that
an improper prior has an arbitrary scaling factor (in other words, the normalization
coefficient is not defined because the distribution cannot be normalized). If we con-
sider a proper prior and then take a suitable limit in order to obtain an improper prior
(for example, a Gaussian prior in which we take the limit of infinite variance) then
the evidence will go to zero, as can be seen from (3.70) and Figure 3.12. It may,
however, be possible to consider the evidence ratio between two models first and
then take a limit to obtain a meaningful answer.

In a practical application, therefore, it will be wise to keep aside an independent
test set of data on which to evaluate the overall performance of the final system.

3.5. The Evidence Approximation

In a fully Bayesian treatment of the linear basis function model, we would intro-
duce prior distributions over the hyperparameters α and β and make predictions by
marginalizing with respect to these hyperparameters as well as with respect to the
parameters w. However, although we can integrate analytically over either w or
over the hyperparameters, the complete marginalization over all of these variables
is analytically intractable. Here we discuss an approximation in which we set the
hyperparameters to specific values determined by maximizing the marginal likeli-
hood function obtained by first integrating over the parameters w. This framework
is known in the statistics literature as empirical Bayes (Bernardo and Smith, 1994;
Gelman et al., 2004), or type 2 maximum likelihood (Berger, 1985), or generalized
maximum likelihood (Wahba, 1975), and in the machine learning literature is also
called the evidence approximation (Gull, 1989; MacKay, 1992a).

If we introduce hyperpriors over α and β, the predictive distribution is obtained
by marginalizing over w, α and β so that

p(t|t) =
∫∫∫

p(t|w, β)p(w|t, α, β)p(α, β|t) dw dα dβ (3.74)

where p(t|w, β) is given by (3.8) and p(w|t, α, β) is given by (3.49) with mN and
SN defined by (3.53) and (3.54) respectively. Here we have omitted the dependence
on the input variable x to keep the notation uncluttered. If the posterior distribution
p(α, β|t) is sharply peaked around values α̂ and β̂, then the predictive distribution is
obtained simply by marginalizing over w in which α and β are fixed to the values α̂
and β̂, so that

p(t|t) ! p(t|t, α̂, β̂) =
∫

p(t|w, β̂)p(w|t, α̂, β̂) dw. (3.75)

166 3. LINEAR MODELS FOR REGRESSION

From Bayes’ theorem, the posterior distribution for α and β is given by

p(α, β|t) ∝ p(t|α, β)p(α, β). (3.76)

If the prior is relatively flat, then in the evidence framework the values of α̂ and
β̂ are obtained by maximizing the marginal likelihood function p(t|α, β). We shall
proceed by evaluating the marginal likelihood for the linear basis function model and
then finding its maxima. This will allow us to determine values for these hyperpa-
rameters from the training data alone, without recourse to cross-validation. Recall
that the ratio α/β is analogous to a regularization parameter.

As an aside it is worth noting that, if we define conjugate (Gamma) prior distri-
butions over α and β, then the marginalization over these hyperparameters in (3.74)
can be performed analytically to give a Student’s t-distribution over w (see Sec-
tion 2.3.7). Although the resulting integral over w is no longer analytically tractable,
it might be thought that approximating this integral, for example using the Laplace
approximation discussed (Section 4.4) which is based on a local Gaussian approxi-
mation centred on the mode of the posterior distribution, might provide a practical
alternative to the evidence framework (Buntine and Weigend, 1991). However, the
integrand as a function of w typically has a strongly skewed mode so that the Laplace
approximation fails to capture the bulk of the probability mass, leading to poorer re-
sults than those obtained by maximizing the evidence (MacKay, 1999).

Returning to the evidence framework, we note that there are two approaches that
we can take to the maximization of the log evidence. We can evaluate the evidence
function analytically and then set its derivative equal to zero to obtain re-estimation
equations for α and β, which we shall do in Section 3.5.2. Alternatively we use a
technique called the expectation maximization (EM) algorithm, which will be dis-
cussed in Section 9.3.4 where we shall also show that these two approaches converge
to the same solution.

3.5.1 Evaluation of the evidence function
The marginal likelihood function p(t|α, β) is obtained by integrating over the

weight parameters w, so that

p(t|α, β) =
∫

p(t|w, β)p(w|α) dw. (3.77)

One way to evaluate this integral is to make use once again of the result (2.115)
for the conditional distribution in a linear-Gaussian model. Here we shall evaluateExercise 3.16
the integral instead by completing the square in the exponent and making use of the
standard form for the normalization coefficient of a Gaussian.

From (3.11), (3.12), and (3.52), we can write the evidence function in the formExercise 3.17

p(t|α, β) =
(

β

2π

)N/2 (α

2π

)M/2
∫

exp {−E(w)} dw (3.78)

This is known as Empirical Bayes or type II maximum
likelihood

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

7

Model evidence and cross-validation

• Consider the degree of polynomial regression

41

Model Evidence and Cross-Validation

Root-mean-square error Model evidence

Fitting polynomial regression models

Outline

• Linear models for regression
• Linear models for classification
– Logistic regression
– Probit regression
– Multi-class regression
– Ordinal regression

• General linear models

42

Logistic regression

• Let us first consider binary classification problem: C1,
C2

43

4.3. Probabilistic Discriminative Models 205

basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

7

Logistic sigmoid
function

4.3. Probabilistic Discriminative Models 205

basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)

Logistic regression

• Interesting property of sigmoid function

44

4.3. Probabilistic Discriminative Models 205

basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)

Logistic regression

• Given a dataset , where ,
and , the likelihood function is given by

45

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

7

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

7

Logistic regression

46

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

Iterative reweighted least squares

• Newton-Raphson scheme

47

4.3. Probabilistic Discriminative Models 207

4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}

= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)

Hessian matrix

Iterative reweighted least squares

• First consider linear model for regression

48

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

7

4.3. Probabilistic Discriminative Models 207

4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}

= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)

49

Iterative reweighted least squares

4.3. Probabilistic Discriminative Models 207

4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}

= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)

4.3. Probabilistic Discriminative Models 207

4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}

= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)

4.3. Probabilistic Discriminative Models 207

4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}

= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)

The same as least square solution!

One step solves it! Why?

50

Iterative reweighted least squares

• Logistic regression

4.3. Probabilistic Discriminative Models 207

4.3.3 Iterative reweighted least squares
In the case of the linear regression models discussed in Chapter 3, the maxi-

mum likelihood solution, on the assumption of a Gaussian noise model, leads to a
closed-form solution. This was a consequence of the quadratic dependence of the
log likelihood function on the parameter vector w. For logistic regression, there
is no longer a closed-form solution, due to the nonlinearity of the logistic sigmoid
function. However, the departure from a quadratic form is not substantial. To be
precise, the error function is concave, as we shall see shortly, and hence has a unique
minimum. Furthermore, the error function can be minimized by an efficient iterative
technique based on the Newton-Raphson iterative optimization scheme, which uses a
local quadratic approximation to the log likelihood function. The Newton-Raphson
update, for minimizing a function E(w), takes the form (Fletcher, 1987; Bishop and
Nabney, 2008)

w(new) = w(old) − H−1∇E(w). (4.92)

where H is the Hessian matrix whose elements comprise the second derivatives of
E(w) with respect to the components of w.

Let us first of all apply the Newton-Raphson method to the linear regression
model (3.3) with the sum-of-squares error function (3.12). The gradient and Hessian
of this error function are given by

∇E(w) =
N∑

n=1

(wTφn − tn)φn = ΦTΦw − ΦTt (4.93)

H = ∇∇E(w) =
N∑

n=1

φnφT
n = ΦTΦ (4.94)

where Φ is the N × M design matrix, whose nth row is given by φT
n . The Newton-Section 3.1.1

Raphson update then takes the form

w(new) = w(old) − (ΦTΦ)−1
{
ΦTΦw(old) − ΦTt

}

= (ΦTΦ)−1ΦTt (4.95)

which we recognize as the standard least-squares solution. Note that the error func-
tion in this case is quadratic and hence the Newton-Raphson formula gives the exact
solution in one step.

Now let us apply the Newton-Raphson update to the cross-entropy error function
(4.90) for the logistic regression model. From (4.91) we see that the gradient and
Hessian of this error function are given by

∇E(w) =
N∑

n=1

(yn − tn)φn = ΦT(y − t) (4.96)

H = ∇∇E(w) =
N∑

n=1

yn(1 − yn)φnφT
n = ΦTRΦ (4.97)

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

208 4. LINEAR MODELS FOR CLASSIFICATION

where we have made use of (4.88). Also, we have introduced the N × N diagonal
matrix R with elements

Rnn = yn(1 − yn). (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < yn < 1, which follows from the form of the logistic sigmoid
function, we see that uTHu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then be-
comes

w(new) = w(old) − (ΦTRΦ)−1ΦT(y − t)
= (ΦTRΦ)−1

{
ΦTRΦw(old) − ΦT(y − t)

}

= (ΦTRΦ)−1ΦTRz (4.99)

where z is an N -dimensional vector with elements

z = Φw(old) − R−1(y − t). (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of t in the logistic regression model are given by

E[t] = σ(x) = y (4.101)
var[t] = E[t2] − E[t]2 = σ(x) − σ(x)2 = y(1 − y) (4.102)

where we have used the property t2 = t for t ∈ {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = wTφ. The
quantity zn, which corresponds to the nth element of z, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w(old)

an(w) $ an(w(old)) +
dan

dyn

∣∣∣∣
w(old)

(tn − yn)

= φT
nw(old) − (yn − tn)

yn(1 − yn)
= zn. (4.103)

N x N diagonal matrix

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

7

51

Iterative reweighted least squares

208 4. LINEAR MODELS FOR CLASSIFICATION

where we have made use of (4.88). Also, we have introduced the N × N diagonal
matrix R with elements

Rnn = yn(1 − yn). (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < yn < 1, which follows from the form of the logistic sigmoid
function, we see that uTHu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then be-
comes

w(new) = w(old) − (ΦTRΦ)−1ΦT(y − t)
= (ΦTRΦ)−1

{
ΦTRΦw(old) − ΦT(y − t)

}

= (ΦTRΦ)−1ΦTRz (4.99)

where z is an N -dimensional vector with elements

z = Φw(old) − R−1(y − t). (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of t in the logistic regression model are given by

E[t] = σ(x) = y (4.101)
var[t] = E[t2] − E[t]2 = σ(x) − σ(x)2 = y(1 − y) (4.102)

where we have used the property t2 = t for t ∈ {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = wTφ. The
quantity zn, which corresponds to the nth element of z, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w(old)

an(w) $ an(w(old)) +
dan

dyn

∣∣∣∣
w(old)

(tn − yn)

= φT
nw(old) − (yn − tn)

yn(1 − yn)
= zn. (4.103)

208 4. LINEAR MODELS FOR CLASSIFICATION

where we have made use of (4.88). Also, we have introduced the N × N diagonal
matrix R with elements

Rnn = yn(1 − yn). (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < yn < 1, which follows from the form of the logistic sigmoid
function, we see that uTHu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then be-
comes

w(new) = w(old) − (ΦTRΦ)−1ΦT(y − t)
= (ΦTRΦ)−1

{
ΦTRΦw(old) − ΦT(y − t)

}

= (ΦTRΦ)−1ΦTRz (4.99)

where z is an N -dimensional vector with elements

z = Φw(old) − R−1(y − t). (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of t in the logistic regression model are given by

E[t] = σ(x) = y (4.101)
var[t] = E[t2] − E[t]2 = σ(x) − σ(x)2 = y(1 − y) (4.102)

where we have used the property t2 = t for t ∈ {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = wTφ. The
quantity zn, which corresponds to the nth element of z, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w(old)

an(w) $ an(w(old)) +
dan

dyn

∣∣∣∣
w(old)

(tn − yn)

= φT
nw(old) − (yn − tn)

yn(1 − yn)
= zn. (4.103)

Iterative updates

208 4. LINEAR MODELS FOR CLASSIFICATION

where we have made use of (4.88). Also, we have introduced the N × N diagonal
matrix R with elements

Rnn = yn(1 − yn). (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < yn < 1, which follows from the form of the logistic sigmoid
function, we see that uTHu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then be-
comes

w(new) = w(old) − (ΦTRΦ)−1ΦT(y − t)
= (ΦTRΦ)−1

{
ΦTRΦw(old) − ΦT(y − t)

}

= (ΦTRΦ)−1ΦTRz (4.99)

where z is an N -dimensional vector with elements

z = Φw(old) − R−1(y − t). (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of t in the logistic regression model are given by

E[t] = σ(x) = y (4.101)
var[t] = E[t2] − E[t]2 = σ(x) − σ(x)2 = y(1 − y) (4.102)

where we have used the property t2 = t for t ∈ {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = wTφ. The
quantity zn, which corresponds to the nth element of z, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w(old)

an(w) $ an(w(old)) +
dan

dyn

∣∣∣∣
w(old)

(tn − yn)

= φT
nw(old) − (yn − tn)

yn(1 − yn)
= zn. (4.103)

208 4. LINEAR MODELS FOR CLASSIFICATION

where we have made use of (4.88). Also, we have introduced the N × N diagonal
matrix R with elements

Rnn = yn(1 − yn). (4.98)

We see that the Hessian is no longer constant but depends on w through the weight-
ing matrix R, corresponding to the fact that the error function is no longer quadratic.
Using the property 0 < yn < 1, which follows from the form of the logistic sigmoid
function, we see that uTHu > 0 for an arbitrary vector u, and so the Hessian matrix
H is positive definite. It follows that the error function is a concave function of w
and hence has a unique minimum.Exercise 4.15

The Newton-Raphson update formula for the logistic regression model then be-
comes

w(new) = w(old) − (ΦTRΦ)−1ΦT(y − t)
= (ΦTRΦ)−1

{
ΦTRΦw(old) − ΦT(y − t)

}

= (ΦTRΦ)−1ΦTRz (4.99)

where z is an N -dimensional vector with elements

z = Φw(old) − R−1(y − t). (4.100)

We see that the update formula (4.99) takes the form of a set of normal equations for a
weighted least-squares problem. Because the weighing matrix R is not constant but
depends on the parameter vector w, we must apply the normal equations iteratively,
each time using the new weight vector w to compute a revised weighing matrix
R. For this reason, the algorithm is known as iterative reweighted least squares, or
IRLS (Rubin, 1983). As in the weighted least-squares problem, the elements of the
diagonal weighting matrix R can be interpreted as variances because the mean and
variance of t in the logistic regression model are given by

E[t] = σ(x) = y (4.101)
var[t] = E[t2] − E[t]2 = σ(x) − σ(x)2 = y(1 − y) (4.102)

where we have used the property t2 = t for t ∈ {0, 1}. In fact, we can interpret IRLS
as the solution to a linearized problem in the space of the variable a = wTφ. The
quantity zn, which corresponds to the nth element of z, can then be given a simple
interpretation as an effective target value in this space obtained by making a local
linear approximation to the logistic sigmoid function around the current operating
point w(old)

an(w) $ an(w(old)) +
dan

dyn

∣∣∣∣
w(old)

(tn − yn)

= φT
nw(old) − (yn − tn)

yn(1 − yn)
= zn. (4.103)

Updated responses

Weight matrix depends on

Multiclass logistic regression

• Suppose we have K classes, C1, …, CK

52

4.3. Probabilistic Discriminative Models 209

4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)

4.3. Probabilistic Discriminative Models 209

4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)

K groups of parameters

4.3. Probabilistic Discriminative Models 209

4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)

4.3. Probabilistic Discriminative Models 209

4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)

This is often referred to as softmax

• likelihood

53

Multiclass logistic regression

4.3. Probabilistic Discriminative Models 209

4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)

T: N x K observation matrix, each row is one-hot vector

• We can use Newton-Raphson updates as well

54

Multiclass logistic regression

4.3. Probabilistic Discriminative Models 209

4.3.4 Multiclass logistic regression
In our discussion of generative models for multiclass classification, we haveSection 4.2

seen that for a large class of distributions, the posterior probabilities are given by a
softmax transformation of linear functions of the feature variables, so that

p(Ck|φ) = yk(φ) =
exp(ak)∑
j exp(aj)

(4.104)

where the ‘activations’ ak are given by

ak = wT
k φ. (4.105)

There we used maximum likelihood to determine separately the class-conditional
densities and the class priors and then found the corresponding posterior probabilities
using Bayes’ theorem, thereby implicitly determining the parameters {wk}. Here we
consider the use of maximum likelihood to determine the parameters {wk} of this
model directly. To do this, we will require the derivatives of yk with respect to all of
the activations aj . These are given byExercise 4.17

∂yk

∂aj
= yk(Ikj − yj) (4.106)

where Ikj are the elements of the identity matrix.
Next we write down the likelihood function. This is most easily done using

the 1-of-K coding scheme in which the target vector tn for a feature vector φn
belonging to class Ck is a binary vector with all elements zero except for element k,
which equals one. The likelihood function is then given by

p(T|w1, . . . ,wK) =
N∏

n=1

K∏

k=1

p(Ck|φn)tnk =
N∏

n=1

K∏

k=1

ytnk
nk (4.107)

where ynk = yk(φn), and T is an N × K matrix of target variables with elements
tnk. Taking the negative logarithm then gives

E(w1, . . . ,wK) = − ln p(T|w1, . . . ,wK) = −
N∑

n=1

K∑

k=1

tnk ln ynk (4.108)

which is known as the cross-entropy error function for the multiclass classification
problem.

We now take the gradient of the error function with respect to one of the param-
eter vectors wj . Making use of the result (4.106) for the derivatives of the softmax
function, we obtainExercise 4.18

∇wjE(w1, . . . ,wK) =
N∑

n=1

(ynj − tnj)φn (4.109)

210 4. LINEAR MODELS FOR CLASSIFICATION

where we have made use of
∑

k tnk = 1. Once again, we see the same form arising
for the gradient as was found for the sum-of-squares error function with the linear
model and the cross-entropy error for the logistic regression model, namely the prod-
uct of the error (ynj − tnj) times the basis function φn. Again, we could use this
to formulate a sequential algorithm in which patterns are presented one at a time, in
which each of the weight vectors is updated using (3.22).

We have seen that the derivative of the log likelihood function for a linear regres-
sion model with respect to the parameter vector w for a data point n took the form
of the ‘error’ yn − tn times the feature vector φn. Similarly, for the combination
of logistic sigmoid activation function and cross-entropy error function (4.90), and
for the softmax activation function with the multiclass cross-entropy error function
(4.108), we again obtain this same simple form. This is an example of a more general
result, as we shall see in Section 4.3.6.

To find a batch algorithm, we again appeal to the Newton-Raphson update to
obtain the corresponding IRLS algorithm for the multiclass problem. This requires
evaluation of the Hessian matrix that comprises blocks of size M × M in which
block j, k is given by

∇wk∇wjE(w1, . . . ,wK) = −
N∑

n=1

ynk(Ikj − ynj)φnφT
n . (4.110)

As with the two-class problem, the Hessian matrix for the multiclass logistic regres-
sion model is positive definite and so the error function again has a unique minimum.Exercise 4.20
Practical details of IRLS for the multiclass case can be found in Bishop and Nabney
(2008).

4.3.5 Probit regression
We have seen that, for a broad range of class-conditional distributions, described

by the exponential family, the resulting posterior class probabilities are given by a
logistic (or softmax) transformation acting on a linear function of the feature vari-
ables. However, not all choices of class-conditional density give rise to such a simple
form for the posterior probabilities (for instance, if the class-conditional densities are
modelled using Gaussian mixtures). This suggests that it might be worth exploring
other types of discriminative probabilistic model. For the purposes of this chapter,
however, we shall return to the two-class case, and again remain within the frame-
work of generalized linear models so that

p(t = 1|a) = f(a) (4.111)

where a = wTφ, and f(·) is the activation function.
One way to motivate an alternative choice for the link function is to consider a

noisy threshold model, as follows. For each input φn, we evaluate an = wTφn and
then we set the target value according to

{
tn = 1 if an ! θ

tn = 0 otherwise.
(4.112)

Probit regression

• An alternative model for binary classification

55

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

7

Probit function vs. logistic function

56

-5 0 5
0

0.2

0.4

0.6

0.8

1

Probit
Logistic

Probit regression

• Equivalent latent variable model

57

Given

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

7

sample the label t from

Sample a latent variable z from

Sample the label t from a step distribution

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

7

Ordinal regression

• Consider to predict K classes with ordering
relationship, C1 < C2 <…< CK, e.g., rank, disease
progression, …

• Using multi-class logistic regression is not
appropriate

58

Ordinal regression
• Consider multi-class Probit regression

59

Partition real domain into ordered regions

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

7

Given

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

7

Check which region z falls in, e.g.,

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

7

Sample a latent variable z from

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

7
Output the corresponding label: k

Generalized linear models

• Let us consider the exponential family to model data

60

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

7
Consider the expectation of t

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓

✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0

h(x,y) = h(x) + h(y)

p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)

N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N

= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘

7
This is a mapping

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓
✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0
h(x,y) = h(x) + h(y)
p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)
N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N
= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘
⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

7

From expectation to natural parameters

• In linear model, we commonly model the expectation
parameters as

61

Generalized linear models

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓
✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0
h(x,y) = h(x) + h(y)
p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)
N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N
= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘
y = (⌘)

y = f
�
w>�(x)

�

7• If we choose

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓
✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0
h(x,y) = h(x) + h(y)
p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)
N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N
= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘
y = (⌘)

y = f
�
w>�(x)

�

f =
�1

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓
✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0
h(x,y) = h(x) + h(y)
p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)
N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N
= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘
⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

7

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓
✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0
h(x,y) = h(x) + h(y)
p(x,y) = p(x)p(y)

h(x) = � log
�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)
N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N
= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)

p(t|⌘) = exp
�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘
⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

f
�1

8

is called link function (link expectation to natural paras)

• Given training data

62

Generalized linear models

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

p(X1 = 1, X2 = 2, X3 = 3) = p(X1 = 2, X2 = 3, X3 = 1)

= p(X1 = 3, X2 = 1, X3 = 2) = . . .

p(✓)d✓
✓ ⇠ p(✓)

X1, X2, . . . |✓ ⇠
1Y

i=1

p(Xi|✓)

X3

h(x) � 0
h(x,y) = h(x) + h(y)
p(x,y) = p(x)p(y)
h(x) = � log

�
p(x)

�

H(x) = �
X

x

p(x) log
�
p(x)

�

�j : RD �! R
�j(x) = xj

�j(x) =

�j(x) = x
j

�j(x) = sin(xj)

�(xn) = [�1(xn), . . . ,�M (xn)]
>

N ⇥M

p(t|w,X) = N (t|�w,�
�1I)

N (t|w>�(x),��1)
N (w|mN ,SN)

↵̂, �̂

�(a) = 1/
�
1 + exp(�a)

�

n = 1, . . . , N
= �(w>�n)

E(w) =
1

2

NX

n=1

{tn �w>�n}2

yn = �(w>�n)

p(C1|�) = y(�) = (w>�)

 (a) =

Z a

1
N (x|0, 1)dx

a = w>�

p(t|a) = (a)t
�
1� (a)

�1�t

z ⇠ N (z|a, 1)
p(t|z) = I(t = 0)I(z  0) + I(t = 1)I(z � 0)

(1, b1], (b1, b2], . . . , (bK�1, bK], (bK ,1)

[bk, bk+1)
p(t|⌘) = exp

�
⌘t� g(⌘)

�

E[t|⌘] = y =
dg(⌘)

d⌘
⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)
(x1, t1), . . . , (xN , tN)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

8

63

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

8

Generalized linear models

prediction error

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

E[t|⌘] = y =
dg(⌘)

d⌘

⌘ = (y)

y = f
�
w>�(x)

�

f =
�1

⌘ = (�1(w>�(x))) = w>�(x)

(x1, t1), . . . , (xN , tN)

E(w) =
NX

n=1

log p(tn|⌘)

=
NX

n=1

⌘ntn � g(⌘n) (2)

@E(w)

@w
=

NX

n=1

@⌘n

@w
tn � @g

@⌘n

@⌘n

@w

=
NX

n=1

�(xn)(tn � yn) (3)

⌘n = w>�(xn)

E[tn|⌘n] = yn =
dg(⌘n)

d⌘n

8

Feature vector

This is consistent with linear regression and
logistic regression

What you should know

• What is design matrix?
• How to obtain MLE for linear regression?
• How to obtain posterior and predictive distribution

for linear regression?
• What is the empirical Bayes and type II MLE?
• Newton-Rapson method for logistic regression
• What is probit regression? What is the equivalent

model? How to conduct multi-class classification?
• What is generalized linear model? What is link

function? What is the general form of the gradient?

64

