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Coding theory

e Let us start with discrete random variables



Coding theory

* How to represent the information contained in the
random variables?

h(x) >0

h(X, y) — h(X) -+ h(}’) X,y are independent



Entropy

 The average among of information need to transmit

Zp log )



Entropy
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Entropy is also the average code length



Entropy reflects uncertainty
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Maximum entropy

* Consider a discrete R.V. with M possible status. We
want to find the distribution has the the maximum

entropy Hfp] = — Zp(azz) Inp(z;).

!

H=— ZP(%‘) Inp(z;) + A (ZP(CI%) - 1)

]

p(il?z) = 1/M uniform distribution



Differential entropy

* Entropy is naturally defined on discrete random
variables.

e But how about continuous variables?



Differential entropy

e Let us divide x into bins of A \
‘A

Mean-value theorem

(i+1)A
/ p(z) dz = p(a:) A
VAN

Entropy on discretized probability
Ha = — ZP(%)A In (p(x;)A) = — ZP(%)A Inp(z;) —In A

Zz’ p(mz>A =1



Differential entropy

Ha = — Zp(wi)Aln (p(x;)A) = — Zp(aci)Alnp(xi) —InA

Goes to infinity
Throw out it

Jim, {Zp(xi)Alnp(xi)} = / p(z) Inp(z)dx
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Differential entropy

 The term that is thrown out reflects that to specify a

continuous variable very precisely requires many
many bits

* Note: differential entropy can be negative!
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Differential entropy

* Given a continuous variable x with mean ¢t and
variance ¢, which distribution has the largest
entropy?
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Differential entropy

. —/Zp(m)lnp(m)dx+)\1 (/Zp(x)da:—l)

s (/_Z zp(z) dz — u) + A3 (/_Z(x — 1)?p(z) da — 02>

1 T — p)?
p(x) = eXp {( 205) } Gaussian distribution!
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Conditional entropy

* Given x, how much information is left for y

Hly|x| = // p(y,x) Inp(y|x) dy dx

H [X, y] — H [y ‘ X] -+ H [X] Prove it by yourself
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Kullback-Leibler (KL) divergence

* Also called relative entropy

- [ g ax— (= [ poxmpx ax)
—/p(X)lﬂ{%} 2

If we use g to transmit information for p, how much extra information
do we need

KL(p||q)
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Kullback-Leibler (KL) divergence

* KL divergence is widely used to measure the
difference between two distributions

KL(pllg) =2 0 =oiffp=

Prove it with convexity
And Jensen’s inequality

* However, it is not symmetric!

KL(p|lq) # KL(q||p)
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KL Divergence

* KL divergence plays the key role in approximate
inference

* All the deterministic approximate methods aim to
minimize the KL divergence between the true and
approximate posteriors (or in the reversed direction)

* |n general, we have alpha divergence
e We will discuss these in detail later
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Mutual information

How many information do the two random variables share?

I[x,y] KL(p(x,y)|lp(x)p(y))

I[x,y] = H[x] — H[x|y] = H[y] — H[y|x] Proveitby

yourself
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What you need to know

* Definition of entropy

* How is differential entropy is derived

* Entropy is an indicator for uncertainty

* KL divergence and properties (especially asymmetric)
 Mutual information
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