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Coding theory

• Let us start with discrete random variables
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Coding theory

• How to represent the information contained in the 
random variables?
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x,y are independent
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Entropy

• The average among of information need to transmit
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Entropy
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Entropy and CodingEntropy and Coding

Entropy is also the average code length



Entropy reflects uncertainty
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52 1. INTRODUCTION
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Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
− ln(1/30) = 3.40.

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives

∂H̃
∂p(xi)∂p(xj)

= −Iij
1
pi

(1.100)

where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that

∫ (i+1)∆

i∆

p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit



Maximum entropy

• Consider a discrete R.V. with M possible status. We 
want to find the distribution has the the maximum 
entropy

7

1.6. Information Theory 51

the number of different ways of allocating the objects to the bins. There are N
ways to choose the first object, (N − 1) ways to choose the second object, and
so on, leading to a total of N ! ways to allocate all N objects to the bins, where N !
(pronounced ‘factorial N ’) denotes the product N ×(N −1)× · · ·×2×1. However,
we don’t wish to distinguish between rearrangements of objects within each bin. In
the ith bin there are ni! ways of reordering the objects, and so the total number of
ways of allocating the N objects to the bins is given by

W =
N !∏
i ni!

(1.94)

which is called the multiplicity. The entropy is then defined as the logarithm of the
multiplicity scaled by an appropriate constant

H =
1
N

lnW =
1
N

lnN ! − 1
N

∑

i

lnni!. (1.95)

We now consider the limit N → ∞, in which the fractions ni/N are held fixed, and
apply Stirling’s approximation

lnN ! % N lnN − N (1.96)

which gives

H = − lim
N→∞

∑

i

(ni

N

)
ln

(ni

N

)
= −

∑

i

pi ln pi (1.97)

where we have used
∑

i ni = N . Here pi = limN→∞(ni/N) is the probability
of an object being assigned to the ith bin. In physics terminology, the specific ar-
rangements of objects in the bins is called a microstate, and the overall distribution
of occupation numbers, expressed through the ratios ni/N , is called a macrostate.
The multiplicity W is also known as the weight of the macrostate.

We can interpret the bins as the states xi of a discrete random variable X , where
p(X = xi) = pi. The entropy of the random variable X is then

H[p] = −
∑

i

p(xi) ln p(xi). (1.98)

Distributions p(xi) that are sharply peaked around a few values will have a relatively
low entropy, whereas those that are spread more evenly across many values will
have higher entropy, as illustrated in Figure 1.30. Because 0 ! pi ! 1, the entropy
is nonnegative, and it will equal its minimum value of 0 when one of the pi =
1 and all other pj #=i = 0. The maximum entropy configuration can be found by
maximizing H using a Lagrange multiplier to enforce the normalization constraintAppendix E
on the probabilities. Thus we maximize

H̃ = −
∑

i

p(xi) ln p(xi) + λ

(
∑

i

p(xi) − 1

)
(1.99)

1.6. Information Theory 51

the number of different ways of allocating the objects to the bins. There are N
ways to choose the first object, (N − 1) ways to choose the second object, and
so on, leading to a total of N ! ways to allocate all N objects to the bins, where N !
(pronounced ‘factorial N ’) denotes the product N ×(N −1)× · · ·×2×1. However,
we don’t wish to distinguish between rearrangements of objects within each bin. In
the ith bin there are ni! ways of reordering the objects, and so the total number of
ways of allocating the N objects to the bins is given by

W =
N !∏
i ni!

(1.94)

which is called the multiplicity. The entropy is then defined as the logarithm of the
multiplicity scaled by an appropriate constant

H =
1
N

lnW =
1
N

lnN ! − 1
N

∑

i

lnni!. (1.95)

We now consider the limit N → ∞, in which the fractions ni/N are held fixed, and
apply Stirling’s approximation

lnN ! % N lnN − N (1.96)

which gives

H = − lim
N→∞

∑

i

(ni

N

)
ln

(ni

N

)
= −

∑

i

pi ln pi (1.97)

where we have used
∑

i ni = N . Here pi = limN→∞(ni/N) is the probability
of an object being assigned to the ith bin. In physics terminology, the specific ar-
rangements of objects in the bins is called a microstate, and the overall distribution
of occupation numbers, expressed through the ratios ni/N , is called a macrostate.
The multiplicity W is also known as the weight of the macrostate.

We can interpret the bins as the states xi of a discrete random variable X , where
p(X = xi) = pi. The entropy of the random variable X is then

H[p] = −
∑

i

p(xi) ln p(xi). (1.98)

Distributions p(xi) that are sharply peaked around a few values will have a relatively
low entropy, whereas those that are spread more evenly across many values will
have higher entropy, as illustrated in Figure 1.30. Because 0 ! pi ! 1, the entropy
is nonnegative, and it will equal its minimum value of 0 when one of the pi =
1 and all other pj #=i = 0. The maximum entropy configuration can be found by
maximizing H using a Lagrange multiplier to enforce the normalization constraintAppendix E
on the probabilities. Thus we maximize

H̃ = −
∑

i

p(xi) ln p(xi) + λ

(
∑

i

p(xi) − 1

)
(1.99)

52 1. INTRODUCTION

pr
ob

ab
ili

tie
s

H = 1.77

0

0.25

0.5
pr

ob
ab

ili
tie

s

H = 3.09

0

0.25

0.5

Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
− ln(1/30) = 3.40.

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives

∂H̃
∂p(xi)∂p(xj)

= −Iij
1
pi

(1.100)

where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that

∫ (i+1)∆

i∆

p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit

uniform distribution



Differential entropy

• Entropy is naturally defined on discrete random 
variables.

• But how about continuous variables?
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Differential entropy

• Let us divide x into bins of
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from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
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We can extend the definition of entropy to include distributions p(x) over con-
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H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
− ln(1/30) = 3.40.

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives

∂H̃
∂p(xi)∂p(xj)

= −Iij
1
pi

(1.100)

where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that

∫ (i+1)∆

i∆

p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit

Mean-value theorem
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from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
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evaluate the second derivative of the entropy, which gives
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We can extend the definition of entropy to include distributions p(x) over con-
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such bin, there must exist a value xi such that
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p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit

52 1. INTRODUCTION

pr
ob

ab
ili

tie
s

H = 1.77

0

0.25

0.5

pr
ob

ab
ili

tie
s

H = 3.09

0

0.25

0.5

Figure 1.30 Histograms of two probability distributions over 30 bins illustrating the higher value of the entropy
H for the broader distribution. The largest entropy would arise from a uniform distribution that would give H =
− ln(1/30) = 3.40.

from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives
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where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that

∫ (i+1)∆
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p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
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i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit

Entropy on discretized probability
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from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
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Differential entropy

1.6. Information Theory 53

∆ → 0. The first term on the right-hand side of (1.102) will approach the integral of
p(x) ln p(x) in this limit so that

lim
∆→0

{
∑

i

p(xi)∆ ln p(xi)

}
= −

∫
p(x) ln p(x) dx (1.103)

where the quantity on the right-hand side is called the differential entropy. We see
that the discrete and continuous forms of the entropy differ by a quantity ln ∆, which
diverges in the limit ∆ → 0. This reflects the fact that to specify a continuous
variable very precisely requires a large number of bits. For a density defined over
multiple continuous variables, denoted collectively by the vector x, the differential
entropy is given by

H[x] = −
∫

p(x) ln p(x) dx. (1.104)

In the case of discrete distributions, we saw that the maximum entropy con-
figuration corresponded to an equal distribution of probabilities across the possible
states of the variable. Let us now consider the maximum entropy configuration for
a continuous variable. In order for this maximum to be well defined, it will be nec-
essary to constrain the first and second moments of p(x) as well as preserving the
normalization constraint. We therefore maximize the differential entropy with the

Ludwig Boltzmann
1844–1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
classical thermodynamics where it

quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = k ln W in which W represents the
number of possible microstates in a macrostate, and
k ! 1.38 × 10−23 (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs. The continued attacks on his work
lead to bouts of depression, and eventually he com-
mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = k ln W is carved on
Boltzmann’s tombstone.
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from which we find that all of the p(xi) are equal and are given by p(xi) = 1/M
where M is the total number of states xi. The corresponding value of the entropy
is then H = lnM . This result can also be derived from Jensen’s inequality (to be
discussed shortly). To verify that the stationary point is indeed a maximum, we canExercise 1.29
evaluate the second derivative of the entropy, which gives

∂H̃
∂p(xi)∂p(xj)

= −Iij
1
pi

(1.100)

where Iij are the elements of the identity matrix.
We can extend the definition of entropy to include distributions p(x) over con-

tinuous variables x as follows. First divide x into bins of width ∆. Then, assuming
p(x) is continuous, the mean value theorem (Weisstein, 1999) tells us that, for each
such bin, there must exist a value xi such that

∫ (i+1)∆

i∆

p(x) dx = p(xi)∆. (1.101)

We can now quantize the continuous variable x by assigning any value x to the value
xi whenever x falls in the ith bin. The probability of observing the value xi is then
p(xi)∆. This gives a discrete distribution for which the entropy takes the form

H∆ = −
∑

i

p(xi)∆ ln (p(xi)∆) = −
∑

i

p(xi)∆ ln p(xi) − ln ∆ (1.102)

where we have used
∑

i p(xi)∆ = 1, which follows from (1.101). We now omit
the second term − ln ∆ on the right-hand side of (1.102) and then consider the limit
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∆ → 0. The first term on the right-hand side of (1.102) will approach the integral of
p(x) ln p(x) in this limit so that

lim
∆→0

{
∑

i

p(xi)∆ ln p(xi)

}
= −

∫
p(x) ln p(x) dx (1.103)

where the quantity on the right-hand side is called the differential entropy. We see
that the discrete and continuous forms of the entropy differ by a quantity ln ∆, which
diverges in the limit ∆ → 0. This reflects the fact that to specify a continuous
variable very precisely requires a large number of bits. For a density defined over
multiple continuous variables, denoted collectively by the vector x, the differential
entropy is given by

H[x] = −
∫

p(x) ln p(x) dx. (1.104)

In the case of discrete distributions, we saw that the maximum entropy con-
figuration corresponded to an equal distribution of probabilities across the possible
states of the variable. Let us now consider the maximum entropy configuration for
a continuous variable. In order for this maximum to be well defined, it will be nec-
essary to constrain the first and second moments of p(x) as well as preserving the
normalization constraint. We therefore maximize the differential entropy with the

Ludwig Boltzmann
1844–1906

Ludwig Eduard Boltzmann was an
Austrian physicist who created the
field of statistical mechanics. Prior
to Boltzmann, the concept of en-
tropy was already known from
classical thermodynamics where it

quantifies the fact that when we take energy from a
system, not all of that energy is typically available
to do useful work. Boltzmann showed that the ther-
modynamic entropy S, a macroscopic quantity, could
be related to the statistical properties at the micro-
scopic level. This is expressed through the famous
equation S = k ln W in which W represents the
number of possible microstates in a macrostate, and
k ! 1.38 × 10−23 (in units of Joules per Kelvin) is
known as Boltzmann’s constant. Boltzmann’s ideas
were disputed by many scientists of they day. One dif-
ficulty they saw arose from the second law of thermo-

dynamics, which states that the entropy of a closed
system tends to increase with time. By contrast, at
the microscopic level the classical Newtonian equa-
tions of physics are reversible, and so they found it
difficult to see how the latter could explain the for-
mer. They didn’t fully appreciate Boltzmann’s argu-
ments, which were statistical in nature and which con-
cluded not that entropy could never decrease over
time but simply that with overwhelming probability it
would generally increase. Boltzmann even had a long-
running dispute with the editor of the leading German
physics journal who refused to let him refer to atoms
and molecules as anything other than convenient the-
oretical constructs. The continued attacks on his work
lead to bouts of depression, and eventually he com-
mitted suicide. Shortly after Boltzmann’s death, new
experiments by Perrin on colloidal suspensions veri-
fied his theories and confirmed the value of the Boltz-
mann constant. The equation S = k ln W is carved on
Boltzmann’s tombstone.
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three constraints
∫ ∞

−∞
p(x) dx = 1 (1.105)

∫ ∞

−∞
xp(x) dx = µ (1.106)

∫ ∞

−∞
(x − µ)2p(x) dx = σ2. (1.107)

The constrained maximization can be performed using Lagrange multipliers so thatAppendix E
we maximize the following functional with respect to p(x)

−
∫ ∞

−∞
p(x) ln p(x) dx + λ1

(∫ ∞

−∞
p(x) dx − 1

)

+λ2

(∫ ∞

−∞
xp(x) dx − µ

)
+ λ3

(∫ ∞

−∞
(x − µ)2p(x) dx − σ2

)
.

Using the calculus of variations, we set the derivative of this functional to zero givingAppendix D

p(x) = exp
{
−1 + λ1 + λ2x + λ3(x − µ)2

}
. (1.108)

The Lagrange multipliers can be found by back substitution of this result into the
three constraint equations, leading finally to the resultExercise 1.34

p(x) =
1

(2πσ2)1/2
exp

{
−(x − µ)2

2σ2

}
(1.109)

and so the distribution that maximizes the differential entropy is the Gaussian. Note
that we did not constrain the distribution to be nonnegative when we maximized the
entropy. However, because the resulting distribution is indeed nonnegative, we see
with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtainExercise 1.35

H[x] =
1
2

{
1 + ln(2πσ2)

}
. (1.110)

Thus we see again that the entropy increases as the distribution becomes broader,
i.e., as σ2 increases. This result also shows that the differential entropy, unlike the
discrete entropy, can be negative, because H(x) < 0 in (1.110) for σ2 < 1/(2πe).

Suppose we have a joint distribution p(x,y) from which we draw pairs of values
of x and y. If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by − ln p(y|x). Thus the average
additional information needed to specify y can be written as

H[y|x] = −
∫∫

p(y,x) ln p(y|x) dy dx (1.111)
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Gaussian distribution!

max



Conditional entropy

• Given x, how much information is left for y

14

54 1. INTRODUCTION

three constraints
∫ ∞

−∞
p(x) dx = 1 (1.105)

∫ ∞

−∞
xp(x) dx = µ (1.106)

∫ ∞

−∞
(x − µ)2p(x) dx = σ2. (1.107)

The constrained maximization can be performed using Lagrange multipliers so thatAppendix E
we maximize the following functional with respect to p(x)

−
∫ ∞

−∞
p(x) ln p(x) dx + λ1

(∫ ∞

−∞
p(x) dx − 1

)

+λ2

(∫ ∞

−∞
xp(x) dx − µ

)
+ λ3

(∫ ∞

−∞
(x − µ)2p(x) dx − σ2

)
.

Using the calculus of variations, we set the derivative of this functional to zero givingAppendix D

p(x) = exp
{
−1 + λ1 + λ2x + λ3(x − µ)2

}
. (1.108)

The Lagrange multipliers can be found by back substitution of this result into the
three constraint equations, leading finally to the resultExercise 1.34

p(x) =
1

(2πσ2)1/2
exp

{
−(x − µ)2

2σ2

}
(1.109)

and so the distribution that maximizes the differential entropy is the Gaussian. Note
that we did not constrain the distribution to be nonnegative when we maximized the
entropy. However, because the resulting distribution is indeed nonnegative, we see
with hindsight that such a constraint is not necessary.

If we evaluate the differential entropy of the Gaussian, we obtainExercise 1.35

H[x] =
1
2

{
1 + ln(2πσ2)

}
. (1.110)

Thus we see again that the entropy increases as the distribution becomes broader,
i.e., as σ2 increases. This result also shows that the differential entropy, unlike the
discrete entropy, can be negative, because H(x) < 0 in (1.110) for σ2 < 1/(2πe).

Suppose we have a joint distribution p(x,y) from which we draw pairs of values
of x and y. If a value of x is already known, then the additional information needed
to specify the corresponding value of y is given by − ln p(y|x). Thus the average
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which is called the conditional entropy of y given x. It is easily seen, using the
product rule, that the conditional entropy satisfies the relationExercise 1.37

H[x,y] = H[y|x] + H[x] (1.112)

where H[x,y] is the differential entropy of p(x,y) and H[x] is the differential en-
tropy of the marginal distribution p(x). Thus the information needed to describe x
and y is given by the sum of the information needed to describe x alone plus the
additional information required to specify y given x.

1.6.1 Relative entropy and mutual information
So far in this section, we have introduced a number of concepts from information

theory, including the key notion of entropy. We now start to relate these ideas to
pattern recognition. Consider some unknown distribution p(x), and suppose that
we have modelled this using an approximating distribution q(x). If we use q(x) to
construct a coding scheme for the purpose of transmitting values of x to a receiver,
then the average additional amount of information (in nats) required to specify the
value of x (assuming we choose an efficient coding scheme) as a result of using q(x)
instead of the true distribution p(x) is given by

KL(p‖q) = −
∫

p(x) ln q(x) dx −
(
−

∫
p(x) ln p(x) dx

)

= −
∫

p(x) ln
{

q(x)
p(x)

}
dx. (1.113)

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver-
gence (Kullback and Leibler, 1951), between the distributions p(x) and q(x). Note
that it is not a symmetrical quantity, that is to say KL(p‖q) #≡ KL(q‖p).

We now show that the Kullback-Leibler divergence satisfies KL(p‖q) ! 0 with
equality if, and only if, p(x) = q(x). To do this we first introduce the concept of
convex functions. A function f(x) is said to be convex if it has the property that
every chord lies on or above the function, as shown in Figure 1.31. Any value of x
in the interval from x = a to x = b can be written in the form λa + (1 − λ)b where
0 " λ " 1. The corresponding point on the chord is given by λf(a) + (1 − λ)f(b),

Claude Shannon
1916–2001

After graduating from Michigan and
MIT, Shannon joined the AT&T Bell
Telephone laboratories in 1941. His
paper ‘A Mathematical Theory of
Communication’ published in the
Bell System Technical Journal in

1948 laid the foundations for modern information the-

ory. This paper introduced the word ‘bit’, and his con-
cept that information could be sent as a stream of 1s
and 0s paved the way for the communications revo-
lution. It is said that von Neumann recommended to
Shannon that he use the term entropy, not only be-
cause of its similarity to the quantity used in physics,
but also because “nobody knows what entropy really
is, so in any discussion you will always have an advan-
tage”.

Prove it by yourself
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which is called the conditional entropy of y given x. It is easily seen, using the
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and y is given by the sum of the information needed to describe x alone plus the
additional information required to specify y given x.

1.6.1 Relative entropy and mutual information
So far in this section, we have introduced a number of concepts from information

theory, including the key notion of entropy. We now start to relate these ideas to
pattern recognition. Consider some unknown distribution p(x), and suppose that
we have modelled this using an approximating distribution q(x). If we use q(x) to
construct a coding scheme for the purpose of transmitting values of x to a receiver,
then the average additional amount of information (in nats) required to specify the
value of x (assuming we choose an efficient coding scheme) as a result of using q(x)
instead of the true distribution p(x) is given by

KL(p‖q) = −
∫

p(x) ln q(x) dx −
(
−

∫
p(x) ln p(x) dx

)

= −
∫

p(x) ln
{

q(x)
p(x)

}
dx. (1.113)

This is known as the relative entropy or Kullback-Leibler divergence, or KL diver-
gence (Kullback and Leibler, 1951), between the distributions p(x) and q(x). Note
that it is not a symmetrical quantity, that is to say KL(p‖q) #≡ KL(q‖p).

We now show that the Kullback-Leibler divergence satisfies KL(p‖q) ! 0 with
equality if, and only if, p(x) = q(x). To do this we first introduce the concept of
convex functions. A function f(x) is said to be convex if it has the property that
every chord lies on or above the function, as shown in Figure 1.31. Any value of x
in the interval from x = a to x = b can be written in the form λa + (1 − λ)b where
0 " λ " 1. The corresponding point on the chord is given by λf(a) + (1 − λ)f(b),

Claude Shannon
1916–2001

After graduating from Michigan and
MIT, Shannon joined the AT&T Bell
Telephone laboratories in 1941. His
paper ‘A Mathematical Theory of
Communication’ published in the
Bell System Technical Journal in

1948 laid the foundations for modern information the-

ory. This paper introduced the word ‘bit’, and his con-
cept that information could be sent as a stream of 1s
and 0s paved the way for the communications revo-
lution. It is said that von Neumann recommended to
Shannon that he use the term entropy, not only be-
cause of its similarity to the quantity used in physics,
but also because “nobody knows what entropy really
is, so in any discussion you will always have an advan-
tage”.

=0 iff p = q

Prove it with convexity
And Jensen’s inequality



KL Divergence

• KL divergence plays the key role in approximate 
inference

• All the deterministic approximate methods aim to 
minimize the KL divergence between the true and 
approximate posteriors (or in the reversed direction)

• In general, we have alpha divergence 
• We will discuss these in detail later
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Mutual information
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where we have used the fact that − lnx is a convex function, together with the nor-
malization condition

∫
q(x) dx = 1. In fact, − lnx is a strictly convex function,

so the equality will hold if, and only if, q(x) = p(x) for all x. Thus we can in-
terpret the Kullback-Leibler divergence as a measure of the dissimilarity of the two
distributions p(x) and q(x).

We see that there is an intimate relationship between data compression and den-
sity estimation (i.e., the problem of modelling an unknown probability distribution)
because the most efficient compression is achieved when we know the true distri-
bution. If we use a distribution that is different from the true one, then we must
necessarily have a less efficient coding, and on average the additional information
that must be transmitted is (at least) equal to the Kullback-Leibler divergence be-
tween the two distributions.

Suppose that data is being generated from an unknown distribution p(x) that we
wish to model. We can try to approximate this distribution using some parametric
distribution q(x|θ), governed by a set of adjustable parameters θ, for example a
multivariate Gaussian. One way to determine θ is to minimize the Kullback-Leibler
divergence between p(x) and q(x|θ) with respect to θ. We cannot do this directly
because we don’t know p(x). Suppose, however, that we have observed a finite set
of training points xn, for n = 1, . . . , N , drawn from p(x). Then the expectation
with respect to p(x) can be approximated by a finite sum over these points, using
(1.35), so that

KL(p‖q) #
N∑

n=1

{− ln q(xn|θ) + ln p(xn)} . (1.119)

The second term on the right-hand side of (1.119) is independent of θ, and the first
term is the negative log likelihood function for θ under the distribution q(x|θ) eval-
uated using the training set. Thus we see that minimizing this Kullback-Leibler
divergence is equivalent to maximizing the likelihood function.

Now consider the joint distribution between two sets of variables x and y given
by p(x,y). If the sets of variables are independent, then their joint distribution will
factorize into the product of their marginals p(x,y) = p(x)p(y). If the variables are
not independent, we can gain some idea of whether they are ‘close’ to being indepen-
dent by considering the Kullback-Leibler divergence between the joint distribution
and the product of the marginals, given by

I[x,y] ≡ KL(p(x,y)‖p(x)p(y))

= −
∫∫

p(x,y) ln
(

p(x)p(y)
p(x,y)

)
dxdy (1.120)

which is called the mutual information between the variables x and y. From the
properties of the Kullback-Leibler divergence, we see that I(x,y) ! 0 with equal-
ity if, and only if, x and y are independent. Using the sum and product rules of
probability, we see that the mutual information is related to the conditional entropy
throughExercise 1.41

I[x,y] = H[x] − H[x|y] = H[y] − H[y|x]. (1.121)
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which is called the mutual information between the variables x and y. From the
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How many information do the two random variables share?

Prove it by 
yourself



What you need to know

• Definition of entropy
• How is differential entropy is derived
• Entropy is an indicator for uncertainty
• KL divergence and properties (especially asymmetric)
• Mutual information

19


