Basic Concepts in Information Theory

Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing

THE

UNIVERSITY
OF UTAH

Coding theory

- Let us start with discrete random variables

Coding theory

- How to represent the information contained in the random variables?

$$
\begin{aligned}
& h(\mathbf{x}) \geq 0 \\
& h(\mathbf{x}, \mathbf{y})=h(\mathbf{x})+h(\mathbf{y}) \quad \text { x,y are independent } \\
& \quad p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{y}) \\
& \quad \\
& \quad \begin{array}{l}
\\
h(\mathbf{x})=-\log (p(\mathbf{x}))
\end{array}
\end{aligned}
$$

Entropy

- The average among of information need to transmit

$$
H(\mathbf{x})=-\sum_{\mathbf{x}} p(\mathbf{x}) \log (p(\mathbf{x}))
$$

Entropy

x	a	b	c	d	e	f	g	h
$p(x)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{64}$	$\frac{1}{64}$	$\frac{1}{64}$	$\frac{1}{64}$

$$
\begin{aligned}
\mathrm{H}[x] & =-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{4} \log _{2} \frac{1}{4}-\frac{1}{8} \log _{2} \frac{1}{8}-\frac{1}{16} \log _{2} \frac{1}{16}-\frac{4}{64} \log _{2} \frac{1}{64} \\
& =2 \text { bits }
\end{aligned}
$$

Entropy is also the average code length

Entropy reflects uncertainty

Maximum entropy

- Consider a discrete R.V. with M possible status. We want to find the distribution has the the maximum entropy $\mathrm{H}[p]=-\sum_{i} p\left(x_{i}\right) \ln p\left(x_{i}\right)$.

$$
\widetilde{\mathrm{H}}=-\sum_{i} p\left(x_{i}\right) \ln p\left(x_{i}\right)+\lambda\left(\sum_{i} p\left(x_{i}\right)-1\right)
$$

$$
p\left(x_{i}\right)=1 / M \quad \text { uniform distribution }
$$

Differential entropy

- Entropy is naturally defined on discrete random variables.
- But how about continuous variables?

Differential entropy

- Let us divide x into bins of Δ

Mean-value theorem

$$
\int_{i \Delta}^{(i+1) \Delta} p(x) \mathrm{d} x=p\left(x_{i}\right) \Delta
$$

Entropy on discretized probability

$$
\begin{array}{r}
\mathrm{H}_{\Delta}=-\sum_{i} p\left(x_{i}\right) \Delta \ln \left(p\left(x_{i}\right) \Delta\right)=-\sum_{i} p\left(x_{i}\right) \Delta \ln p\left(x_{i}\right)-\ln \Delta \\
\sum_{i} p\left(x_{i}\right) \Delta=1
\end{array}
$$

Differential entropy

$$
\begin{array}{r}
\mathrm{H}_{\Delta}=-\sum_{i} p\left(x_{i}\right) \Delta \ln \left(p\left(x_{i}\right) \Delta\right)=-\sum_{i} p\left(x_{i}\right) \Delta \ln p\left(x_{i}\right)-\ln \Delta \\
\lim _{\Delta \rightarrow 0}\left\{\sum_{i} p\left(x_{i}\right) \Delta \ln p\left(x_{i}\right)\right\}=\int p(x) \ln p(x) \mathrm{d} x \\
\begin{array}{c}
\text { Goes to infinity } \\
\text { Throw out it }
\end{array} \\
\mathrm{H}[\mathbf{x}]=-\int p(\mathbf{x}) \ln p(\mathbf{x}) \mathrm{d} \mathbf{x}
\end{array}
$$

Differential entropy

- The term that is thrown out reflects that to specify a continuous variable very precisely requires many many bits
- Note: differential entropy can be negative!

Differential entropy

- Given a continuous variable x with mean μ and variance σ^{2}, which distribution has the largest entropy?

$$
\begin{aligned}
\int_{-\infty}^{\infty} p(x) \mathrm{d} x & =1 \\
\int_{-\infty}^{\infty} x p(x) \mathrm{d} x & =\mu \\
\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) \mathrm{d} x & =\sigma^{2} .
\end{aligned}
$$

Differential entropy

$$
\begin{aligned}
\max & -\int_{-\infty}^{\infty} p(x) \ln p(x) \mathrm{d} x+\lambda_{1}\left(\int_{-\infty}^{\infty} p(x) \mathrm{d} x-1\right) \\
& +\lambda_{2}\left(\int_{-\infty}^{\infty} x p(x) \mathrm{d} x-\mu\right)+\lambda_{3}\left(\int_{-\infty}^{\infty}(x-\mu)^{2} p(x) \mathrm{d} x-\sigma^{2}\right)
\end{aligned}
$$

$$
p(x)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} \quad \text { Gaussian distribution! }
$$

Conditional entropy

- Given \boldsymbol{x}, how much information is left for \boldsymbol{y}

$$
\mathrm{H}[\mathbf{y} \mid \mathbf{x}]=-\iint p(\mathbf{y}, \mathbf{x}) \ln p(\mathbf{y} \mid \mathbf{x}) \mathrm{d} \mathbf{y} \mathrm{~d} \mathbf{x}
$$

$\mathrm{H}[\mathbf{x}, \mathbf{y}]=\mathrm{H}[\mathbf{y} \mid \mathbf{x}]+\mathrm{H}[\mathbf{x}] \quad$ Prove it by yourself

Kullback-Leibler (KL) divergence

- Also called relative entropy

$$
\begin{aligned}
\mathrm{KL}(p \| q) & =-\int p(\mathbf{x}) \ln q(\mathbf{x}) \mathrm{d} \mathbf{x}-\left(-\int p(\mathbf{x}) \ln p(\mathbf{x}) \mathrm{d} \mathbf{x}\right) \\
& =-\int p(\mathbf{x}) \ln \left\{\frac{q(\mathbf{x})}{p(\mathbf{x})}\right\} \mathrm{d} \mathbf{x} .
\end{aligned}
$$

If we use q to transmit information for p, how much extra information do we need

Kullback-Leibler (KL) divergence

- KL divergence is widely used to measure the difference between two distributions

$$
\mathrm{KL}(p \| q) \geqslant 0 \quad=0 \text { iff } \mathrm{p}=\mathrm{q}
$$

Prove it with convexity
And Jensen's inequality

- However, it is not symmetric!

$$
\mathrm{KL}(p \| q) \not \equiv \mathrm{KL}(q \| p)
$$

KL Divergence

- KL divergence plays the key role in approximate inference
- All the deterministic approximate methods aim to minimize the KL divergence between the true and approximate posteriors (or in the reversed direction)
- In general, we have alpha divergence
- We will discuss these in detail later

Mutual information

How many information do the two random variables share?

$$
\begin{aligned}
\mathrm{I}[\mathbf{x}, \mathbf{y}] & \equiv \mathrm{KL}(p(\mathbf{x}, \mathbf{y}) \| p(\mathbf{x}) p(\mathbf{y})) \\
& =-\iint p(\mathbf{x}, \mathbf{y}) \ln \left(\frac{p(\mathbf{x}) p(\mathbf{y})}{p(\mathbf{x}, \mathbf{y})}\right) \mathrm{d} \mathbf{x} \mathrm{~d} \mathbf{y}
\end{aligned}
$$

$$
\mathrm{I}[\mathbf{x}, \mathbf{y}]=\mathrm{H}[\mathbf{x}]-\mathrm{H}[\mathbf{x} \mid \mathbf{y}]=\mathrm{H}[\mathbf{y}]-\mathrm{H}[\mathbf{y} \mid \mathbf{x}]
$$

What you need to know

- Definition of entropy
- How is differential entropy is derived
- Entropy is an indicator for uncertainty
- KL divergence and properties (especially asymmetric)
- Mutual information

