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• Maximum likelihood estimation (MLE), 
Maximum A posterior estimation (MAP)

• Probability distributions
– Binomial, multinomial
– Beta, Dirichlet
– Gaussian, student t
– (inverse) Gamma, (inverse) Wishart
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Maximum likelihood estimation (MLE)

We have observed a set of Independent and identically 
distributed (IID) random variables from

4
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Suppose we have a distribution parameterized by
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observations

How do we estimate from
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Maximum likelihood estimation (MLE)
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The probability density (or mass) evaluated at each 
observation is called the “likelihood” of the 
observation
We want to find 
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that maximizes the likelihood of all the 
observations
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• What is the problem of MLE?

6

Maximum a posterior estimation (MAP)

We are in the Bayesian world! We always have 
some prior knowledge about
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Corresponds to the regularizer in non-Bayesian view 



Be aware 

• Although MAP looks a good way to incorporate the prior 
knowledge, it is not ideal in Bayesian (probabilistic) 
perspective
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Goal:

is just the mode of the posterior distribution
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Let’ s review commonly used probability 
distributions

• They are used everywhere – all kinds of statistical 
(Bayesian or non-Bayesian) applications

• They are building blocks to construct more complex 
probabilistic models 

9

Like 1+1=2, you should be very familiar with them!



Binary variables

• Consider a binary random variable

10

e.g., toss a coin, buy or not buy
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Bernoulli distribution:
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Binary variables - MLE
• Suppose we have N IID observations                               ,

11

what is the MLE of      ?
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2.1. Binary Variables 69

where 0 ! µ ! 1, from which it follows that p(x = 0|µ) = 1 − µ. The probability
distribution over x can therefore be written in the form

Bern(x|µ) = µx(1 − µ)1−x (2.2)

which is known as the Bernoulli distribution. It is easily verified that this distributionExercise 2.1
is normalized and that it has mean and variance given by

E[x] = µ (2.3)
var[x] = µ(1 − µ). (2.4)

Now suppose we have a data set D = {x1, . . . , xN} of observed values of x.
We can construct the likelihood function, which is a function of µ, on the assumption
that the observations are drawn independently from p(x|µ), so that

p(D|µ) =
N∏

n=1

p(xn|µ) =
N∏

n=1

µxn(1 − µ)1−xn . (2.5)

In a frequentist setting, we can estimate a value for µ by maximizing the likelihood
function, or equivalently by maximizing the logarithm of the likelihood. In the case
of the Bernoulli distribution, the log likelihood function is given by

ln p(D|µ) =
N∑

n=1

ln p(xn|µ) =
N∑

n=1

{xn ln µ + (1 − xn) ln(1 − µ)} . (2.6)

At this point, it is worth noting that the log likelihood function depends on the N
observations xn only through their sum

∑
n xn. This sum provides an example of a

sufficient statistic for the data under this distribution, and we shall study the impor-
tant role of sufficient statistics in some detail. If we set the derivative of ln p(D|µ)Section 2.4
with respect to µ equal to zero, we obtain the maximum likelihood estimator

µML =
1
N

N∑

n=1

xn (2.7)

Jacob Bernoulli
1654–1705

Jacob Bernoulli, also known as
Jacques or James Bernoulli, was a
Swiss mathematician and was the
first of many in the Bernoulli family
to pursue a career in science and
mathematics. Although compelled

to study philosophy and theology against his will by
his parents, he travelled extensively after graduating
in order to meet with many of the leading scientists of

his time, including Boyle and Hooke in England. When
he returned to Switzerland, he taught mechanics and
became Professor of Mathematics at Basel in 1687.
Unfortunately, rivalry between Jacob and his younger
brother Johann turned an initially productive collabora-
tion into a bitter and public dispute. Jacob’s most sig-
nificant contributions to mathematics appeared in The
Art of Conjecture published in 1713, eight years after
his death, which deals with topics in probability the-
ory including what has become known as the Bernoulli
distribution.
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µML =
1
N

N∑

n=1

xn (2.7)

Jacob Bernoulli
1654–1705

Jacob Bernoulli, also known as
Jacques or James Bernoulli, was a
Swiss mathematician and was the
first of many in the Bernoulli family
to pursue a career in science and
mathematics. Although compelled

to study philosophy and theology against his will by
his parents, he travelled extensively after graduating
in order to meet with many of the leading scientists of

his time, including Boyle and Hooke in England. When
he returned to Switzerland, he taught mechanics and
became Professor of Mathematics at Basel in 1687.
Unfortunately, rivalry between Jacob and his younger
brother Johann turned an initially productive collabora-
tion into a bitter and public dispute. Jacob’s most sig-
nificant contributions to mathematics appeared in The
Art of Conjecture published in 1713, eight years after
his death, which deals with topics in probability the-
ory including what has become known as the Bernoulli
distribution.
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Binary variables

• Binomial distribution:  suppose I toss a coin for N 
times, what is the number of heads? 

12

Repeat Bernoulli experiments N times
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Binary variables

• Binomial distribution: how to compute the expectation 
and variance?

13
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Categorical variables

• Suppose a random variable can take K values (K>= 2). 
We call it a categorical (or discrete) variable. 

• We use a K-dimensional vector with only one 
nonzero entry (i.e., 1) to represent a sample of 
categorical variable.

• e.g., K = 4, the variable observed as category 2

14
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Categorical variables

• The distribution of a categorical variable is  
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2.2. Multinomial Variables 75

0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x3 = 1, then x
will be represented by

x = (0, 0, 1, 0, 0, 0)T. (2.25)

Note that such vectors satisfy
∑K

k=1 xk = 1. If we denote the probability of xk = 1
by the parameter µk, then the distribution of x is given

p(x|µ) =
K∏

k=1

µxk
k (2.26)

where µ = (µ1, . . . , µK)T, and the parameters µk are constrained to satisfy µk ! 0
and

∑
k µk = 1, because they represent probabilities. The distribution (2.26) can be

regarded as a generalization of the Bernoulli distribution to more than two outcomes.
It is easily seen that the distribution is normalized

∑

x

p(x|µ) =
K∑

k=1

µk = 1 (2.27)

and that
E[x|µ] =

∑

x

p(x|µ)x = (µ1, . . . , µM )T = µ. (2.28)

Now consider a data set D of N independent observations x1, . . . ,xN . The
corresponding likelihood function takes the form

p(D|µ) =
N∏

n=1

K∏

k=1

µxnk
k =

K∏

k=1

µ
(P

n xnk)
k =

K∏

k=1

µmk
k . (2.29)

We see that the likelihood function depends on the N data points only through the
K quantities

mk =
∑

n

xnk (2.30)

which represent the number of observations of xk = 1. These are called the sufficient
statistics for this distribution.Section 2.4

In order to find the maximum likelihood solution for µ, we need to maximize
ln p(D|µ) with respect to µk taking account of the constraint that the µk must sum
to one. This can be achieved using a Lagrange multiplier λ and maximizingAppendix E

K∑

k=1

mk lnµk + λ

(
K∑

k=1

µk − 1

)
. (2.31)

Setting the derivative of (2.31) with respect to µk to zero, we obtain

µk = −mk/λ. (2.32)
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Note: we have constraints on the parameter
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• Consider we have N IID observations
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Categorical variables - MLE

2.2. Multinomial Variables 75

0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x3 = 1, then x
will be represented by

x = (0, 0, 1, 0, 0, 0)T. (2.25)

Note that such vectors satisfy
∑K

k=1 xk = 1. If we denote the probability of xk = 1
by the parameter µk, then the distribution of x is given
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and
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k µk = 1, because they represent probabilities. The distribution (2.26) can be
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n=1
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k=1

µxnk
k =
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µ
(P

n xnk)
k =
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k=1

µmk
k . (2.29)

We see that the likelihood function depends on the N data points only through the
K quantities

mk =
∑

n

xnk (2.30)

which represent the number of observations of xk = 1. These are called the sufficient
statistics for this distribution.Section 2.4

In order to find the maximum likelihood solution for µ, we need to maximize
ln p(D|µ) with respect to µk taking account of the constraint that the µk must sum
to one. This can be achieved using a Lagrange multiplier λ and maximizingAppendix E

K∑

k=1

mk lnµk + λ

(
K∑

k=1

µk − 1

)
. (2.31)

Setting the derivative of (2.31) with respect to µk to zero, we obtain

µk = −mk/λ. (2.32)
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We can solve for the Lagrange multiplier λ by substituting (2.32) into the constraint∑
k µk = 1 to give λ = −N . Thus we obtain the maximum likelihood solution in

the form
µML

k =
mk

N
(2.33)

which is the fraction of the N observations for which xk = 1.
We can consider the joint distribution of the quantities m1, . . . , mK , conditioned

on the parameters µ and on the total number N of observations. From (2.29) this
takes the form

Mult(m1, m2, . . . , mK |µ, N) =
(

N

m1m2 . . . mK

) K∏

k=1

µmk
k (2.34)

which is known as the multinomial distribution. The normalization coefficient is the
number of ways of partitioning N objects into K groups of size m1, . . . , mK and is
given by (

N

m1m2 . . . mK

)
=

N !
m1!m2! . . . mK !

. (2.35)

Note that the variables mk are subject to the constraint

K∑

k=1

mk = N. (2.36)

2.2.1 The Dirichlet distribution
We now introduce a family of prior distributions for the parameters {µk} of

the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

p(µ|α) ∝
K∏

k=1

µαk−1
k (2.37)

where 0 ! µk ! 1 and
∑

k µk = 1. Here α1, . . . , αK are the parameters of the
distribution, and α denotes (α1, . . . , αK)T. Note that, because of the summation
constraint, the distribution over the space of the {µk} is confined to a simplex of
dimensionality K − 1, as illustrated for K = 3 in Figure 2.4.

The normalized form for this distribution is byExercise 2.9

Dir(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏

k=1

µαk−1
k (2.38)

which is called the Dirichlet distribution. Here Γ(x) is the gamma function defined
by (1.141) while

α0 =
K∑

k=1

αk. (2.39)
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• Multinomial distribution: the distribution of the 
counts of the K categories in N IID observations:
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the form
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mk
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which is the fraction of the N observations for which xk = 1.
We can consider the joint distribution of the quantities m1, . . . , mK , conditioned

on the parameters µ and on the total number N of observations. From (2.29) this
takes the form

Mult(m1, m2, . . . , mK |µ, N) =
(
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number of ways of partitioning N objects into K groups of size m1, . . . , mK and is
given by (
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)
=
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Note that the variables mk are subject to the constraint
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2.2.1 The Dirichlet distribution
We now introduce a family of prior distributions for the parameters {µk} of

the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

p(µ|α) ∝
K∏

k=1

µαk−1
k (2.37)

where 0 ! µk ! 1 and
∑

k µk = 1. Here α1, . . . , αK are the parameters of the
distribution, and α denotes (α1, . . . , αK)T. Note that, because of the summation
constraint, the distribution over the space of the {µk} is confined to a simplex of
dimensionality K − 1, as illustrated for K = 3 in Figure 2.4.

The normalized form for this distribution is byExercise 2.9
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Γ(α0)
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which is called the Dirichlet distribution. Here Γ(x) is the gamma function defined
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We can solve for the Lagrange multiplier λ by substituting (2.32) into the constraint∑
k µk = 1 to give λ = −N . Thus we obtain the maximum likelihood solution in

the form
µML

k =
mk

N
(2.33)

which is the fraction of the N observations for which xk = 1.
We can consider the joint distribution of the quantities m1, . . . , mK , conditioned

on the parameters µ and on the total number N of observations. From (2.29) this
takes the form

Mult(m1, m2, . . . , mK |µ, N) =
(
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which is known as the multinomial distribution. The normalization coefficient is the
number of ways of partitioning N objects into K groups of size m1, . . . , mK and is
given by (
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)
=
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. (2.35)

Note that the variables mk are subject to the constraint

K∑

k=1

mk = N. (2.36)

2.2.1 The Dirichlet distribution
We now introduce a family of prior distributions for the parameters {µk} of

the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

p(µ|α) ∝
K∏

k=1

µαk−1
k (2.37)

where 0 ! µk ! 1 and
∑

k µk = 1. Here α1, . . . , αK are the parameters of the
distribution, and α denotes (α1, . . . , αK)T. Note that, because of the summation
constraint, the distribution over the space of the {µk} is confined to a simplex of
dimensionality K − 1, as illustrated for K = 3 in Figure 2.4.

The normalized form for this distribution is byExercise 2.9

Dir(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏

k=1

µαk−1
k (2.38)

which is called the Dirichlet distribution. Here Γ(x) is the gamma function defined
by (1.141) while

α0 =
K∑

k=1

αk. (2.39)
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Link categorical variables to ML models 
(we will discuss them later)

2.2. Multinomial Variables 75

0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x3 = 1, then x
will be represented by

x = (0, 0, 1, 0, 0, 0)T. (2.25)

Note that such vectors satisfy
∑K

k=1 xk = 1. If we denote the probability of xk = 1
by the parameter µk, then the distribution of x is given

p(x|µ) =
K∏

k=1

µxk
k (2.26)

where µ = (µ1, . . . , µK)T, and the parameters µk are constrained to satisfy µk ! 0
and

∑
k µk = 1, because they represent probabilities. The distribution (2.26) can be

regarded as a generalization of the Bernoulli distribution to more than two outcomes.
It is easily seen that the distribution is normalized

∑

x

p(x|µ) =
K∑

k=1

µk = 1 (2.27)

and that
E[x|µ] =

∑

x

p(x|µ)x = (µ1, . . . , µM )T = µ. (2.28)

Now consider a data set D of N independent observations x1, . . . ,xN . The
corresponding likelihood function takes the form

p(D|µ) =
N∏

n=1

K∏

k=1

µxnk
k =

K∏

k=1

µ
(P

n xnk)
k =

K∏

k=1

µmk
k . (2.29)

We see that the likelihood function depends on the N data points only through the
K quantities

mk =
∑

n

xnk (2.30)

which represent the number of observations of xk = 1. These are called the sufficient
statistics for this distribution.Section 2.4

In order to find the maximum likelihood solution for µ, we need to maximize
ln p(D|µ) with respect to µk taking account of the constraint that the µk must sum
to one. This can be achieved using a Lagrange multiplier λ and maximizingAppendix E

K∑

k=1

mk lnµk + λ

(
K∑

k=1

µk − 1

)
. (2.31)

Setting the derivative of (2.31) with respect to µk to zero, we obtain

µk = −mk/λ. (2.32)
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– Logistic regression 

– Probit regression

– Multi-class classification

– Ordinal regression
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in terms of features
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• A Bernoulli distribution is determined by  
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Distribution of discrete distributions

• Can we have a distribution over      ?
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Beta distribution

2.1. Binary Variables 71

given by (2.3) and (2.4), respectively, we have

E[m] ≡
N∑

m=0

mBin(m|N, µ) = Nµ (2.11)

var[m] ≡
N∑

m=0

(m − E[m])2 Bin(m|N, µ) = Nµ(1 − µ). (2.12)

These results can also be proved directly using calculus.Exercise 2.4

2.1.1 The beta distribution
We have seen in (2.8) that the maximum likelihood setting for the parameter µ

in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having x = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p(µ)
over the parameter µ. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical properties. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form µx(1 − µ)1−x. If we choose a prior to be proportional to powers of µ and
(1 − µ), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the prior.
This property is called conjugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (2.13)

where Γ(x) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so thatExercise 2.5

∫ 1

0

Beta(µ|a, b) dµ = 1. (2.14)

The mean and variance of the beta distribution are given byExercise 2.6

E[µ] =
a

a + b
(2.15)

var[µ] =
ab

(a + b)2(a + b + 1)
. (2.16)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter µ. Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of µ is now obtained by multiplying the beta prior
(2.13) by the binomial likelihood function (2.9) and normalizing. Keeping only the
factors that depend on µ, we see that this posterior distribution has the form

p(µ|m, l, a, b) ∝ µm+a−1(1 − µ)l+b−1 (2.17)
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Figure 2.2 Plots of the beta distribution Beta(µ|a, b) given by (2.13) as a function of µ for various values of the
hyperparameters a and b.

where l = N − m, and therefore corresponds to the number of ‘tails’ in the coin
example. We see that (2.17) has the same functional dependence on µ as the prior
distribution, reflecting the conjugacy properties of the prior with respect to the like-
lihood function. Indeed, it is simply another beta distribution, and its normalization
coefficient can therefore be obtained by comparison with (2.13) to give

p(µ|m, l, a, b) =
Γ(m + a + l + b)
Γ(m + a)Γ(l + b)

µm+a−1(1 − µ)l+b−1. (2.18)

We see that the effect of observing a data set of m observations of x = 1 and
l observations of x = 0 has been to increase the value of a by m, and the value of
b by l, in going from the prior distribution to the posterior distribution. This allows
us to provide a simple interpretation of the hyperparameters a and b in the prior as
an effective number of observations of x = 1 and x = 0, respectively. Note that
a and b need not be integers. Furthermore, the posterior distribution can act as the
prior if we subsequently observe additional data. To see this, we can imagine taking
observations one at a time and after each observation updating the current posterior
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given by (2.3) and (2.4), respectively, we have

E[m] ≡
N∑

m=0

mBin(m|N, µ) = Nµ (2.11)

var[m] ≡
N∑

m=0

(m − E[m])2 Bin(m|N, µ) = Nµ(1 − µ). (2.12)

These results can also be proved directly using calculus.Exercise 2.4

2.1.1 The beta distribution
We have seen in (2.8) that the maximum likelihood setting for the parameter µ

in the Bernoulli distribution, and hence in the binomial distribution, is given by the
fraction of the observations in the data set having x = 1. As we have already noted,
this can give severely over-fitted results for small data sets. In order to develop a
Bayesian treatment for this problem, we need to introduce a prior distribution p(µ)
over the parameter µ. Here we consider a form of prior distribution that has a simple
interpretation as well as some useful analytical properties. To motivate this prior,
we note that the likelihood function takes the form of the product of factors of the
form µx(1 − µ)1−x. If we choose a prior to be proportional to powers of µ and
(1 − µ), then the posterior distribution, which is proportional to the product of the
prior and the likelihood function, will have the same functional form as the prior.
This property is called conjugacy and we will see several examples of it later in this
chapter. We therefore choose a prior, called the beta distribution, given by

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (2.13)

where Γ(x) is the gamma function defined by (1.141), and the coefficient in (2.13)
ensures that the beta distribution is normalized, so thatExercise 2.5

∫ 1

0

Beta(µ|a, b) dµ = 1. (2.14)

The mean and variance of the beta distribution are given byExercise 2.6

E[µ] =
a

a + b
(2.15)

var[µ] =
ab

(a + b)2(a + b + 1)
. (2.16)

The parameters a and b are often called hyperparameters because they control the
distribution of the parameter µ. Figure 2.2 shows plots of the beta distribution for
various values of the hyperparameters.

The posterior distribution of µ is now obtained by multiplying the beta prior
(2.13) by the binomial likelihood function (2.9) and normalizing. Keeping only the
factors that depend on µ, we see that this posterior distribution has the form

p(µ|m, l, a, b) ∝ µm+a−1(1 − µ)l+b−1 (2.17)



Beta distribution is a conjugate prior to the Bernoulli 
likelihood. We will discuss it later.
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0. So, for instance if we have a variable that can take K = 6 states and a particular
observation of the variable happens to correspond to the state where x3 = 1, then x
will be represented by

x = (0, 0, 1, 0, 0, 0)T. (2.25)

Note that such vectors satisfy
∑K

k=1 xk = 1. If we denote the probability of xk = 1
by the parameter µk, then the distribution of x is given

p(x|µ) =
K∏

k=1

µxk
k (2.26)

where µ = (µ1, . . . , µK)T, and the parameters µk are constrained to satisfy µk ! 0
and

∑
k µk = 1, because they represent probabilities. The distribution (2.26) can be

regarded as a generalization of the Bernoulli distribution to more than two outcomes.
It is easily seen that the distribution is normalized

∑

x

p(x|µ) =
K∑

k=1

µk = 1 (2.27)

and that
E[x|µ] =

∑

x

p(x|µ)x = (µ1, . . . , µM )T = µ. (2.28)

Now consider a data set D of N independent observations x1, . . . ,xN . The
corresponding likelihood function takes the form

p(D|µ) =
N∏

n=1

K∏

k=1

µxnk
k =

K∏

k=1

µ
(P

n xnk)
k =

K∏

k=1

µmk
k . (2.29)

We see that the likelihood function depends on the N data points only through the
K quantities

mk =
∑

n

xnk (2.30)

which represent the number of observations of xk = 1. These are called the sufficient
statistics for this distribution.Section 2.4

In order to find the maximum likelihood solution for µ, we need to maximize
ln p(D|µ) with respect to µk taking account of the constraint that the µk must sum
to one. This can be achieved using a Lagrange multiplier λ and maximizingAppendix E

K∑

k=1

mk lnµk + λ

(
K∑

k=1

µk − 1

)
. (2.31)

Setting the derivative of (2.31) with respect to µk to zero, we obtain

µk = −mk/λ. (2.32)
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We can solve for the Lagrange multiplier λ by substituting (2.32) into the constraint∑
k µk = 1 to give λ = −N . Thus we obtain the maximum likelihood solution in

the form
µML

k =
mk

N
(2.33)

which is the fraction of the N observations for which xk = 1.
We can consider the joint distribution of the quantities m1, . . . , mK , conditioned

on the parameters µ and on the total number N of observations. From (2.29) this
takes the form

Mult(m1, m2, . . . , mK |µ, N) =
(

N

m1m2 . . . mK

) K∏

k=1

µmk
k (2.34)

which is known as the multinomial distribution. The normalization coefficient is the
number of ways of partitioning N objects into K groups of size m1, . . . , mK and is
given by (

N

m1m2 . . . mK

)
=

N !
m1!m2! . . . mK !

. (2.35)

Note that the variables mk are subject to the constraint

K∑

k=1

mk = N. (2.36)

2.2.1 The Dirichlet distribution
We now introduce a family of prior distributions for the parameters {µk} of

the multinomial distribution (2.34). By inspection of the form of the multinomial
distribution, we see that the conjugate prior is given by

p(µ|α) ∝
K∏

k=1

µαk−1
k (2.37)

where 0 ! µk ! 1 and
∑

k µk = 1. Here α1, . . . , αK are the parameters of the
distribution, and α denotes (α1, . . . , αK)T. Note that, because of the summation
constraint, the distribution over the space of the {µk} is confined to a simplex of
dimensionality K − 1, as illustrated for K = 3 in Figure 2.4.

The normalized form for this distribution is byExercise 2.9

Dir(µ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αK)

K∏

k=1

µαk−1
k (2.38)

which is called the Dirichlet distribution. Here Γ(x) is the gamma function defined
by (1.141) while

α0 =
K∑

k=1

αk. (2.39)
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are called concentration parameters
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Beta dist. is a special case of Dirichlet dist. when K=2
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Figure 2.4 The Dirichlet distribution over three variables µ1, µ2, µ3

is confined to a simplex (a bounded linear manifold) of
the form shown, as a consequence of the constraints
0 ! µk ! 1 and

P
k µk = 1.

µ1

µ2

µ3

Plots of the Dirichlet distribution over the simplex, for various settings of the param-
eters αk, are shown in Figure 2.5.

Multiplying the prior (2.38) by the likelihood function (2.34), we obtain the
posterior distribution for the parameters {µk} in the form

p(µ|D, α) ∝ p(D|µ)p(µ|α) ∝
K∏

k=1

µαk+mk−1
k . (2.40)

We see that the posterior distribution again takes the form of a Dirichlet distribution,
confirming that the Dirichlet is indeed a conjugate prior for the multinomial. This
allows us to determine the normalization coefficient by comparison with (2.38) so
that

p(µ|D, α) = Dir(µ|α + m)

=
Γ(α0 + N)

Γ(α1 + m1) · · ·Γ(αK + mK)

K∏

k=1

µαk+mk−1
k (2.41)

where we have denoted m = (m1, . . . , mK)T. As for the case of the binomial
distribution with its beta prior, we can interpret the parameters αk of the Dirichlet
prior as an effective number of observations of xk = 1.

Note that two-state quantities can either be represented as binary variables and

Lejeune Dirichlet
1805–1859

Johann Peter Gustav Lejeune
Dirichlet was a modest and re-
served mathematician who made
contributions in number theory, me-
chanics, and astronomy, and who
gave the first rigorous analysis of

Fourier series. His family originated from Richelet
in Belgium, and the name Lejeune Dirichlet comes

from ‘le jeune de Richelet’ (the young person from
Richelet). Dirichlet’s first paper, which was published
in 1825, brought him instant fame. It concerned Fer-
mat’s last theorem, which claims that there are no
positive integer solutions to xn + yn = zn for n > 2.
Dirichlet gave a partial proof for the case n = 5, which
was sent to Legendre for review and who in turn com-
pleted the proof. Later, Dirichlet gave a complete proof
for n = 14, although a full proof of Fermat’s last theo-
rem for arbitrary n had to wait until the work of Andrew
Wiles in the closing years of the 20th century.
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Dirichlet distribution is a conjugate prior to the 
categorical likelihood. We will discuss it later.
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Latent Dirichlet allocation (LDA)

LATENT DIRICHLET ALLOCATION

TheWilliam Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annual $100,000
donation, too.

Figure 8: An example article from the AP corpus. Each color codes a different factor from which
the word is putatively generated.

1009

[Blei et. al. 03]
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78 2. PROBABILITY DISTRIBUTIONS

Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can

Everybody knows the single-variable case
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Sometimes we use , which is called precision matrix
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Figure 2.8 Contours of constant
probability density for a Gaussian
distribution in two dimensions in
which the covariance matrix is (a) of
general form, (b) diagonal, in which
the elliptical contours are aligned
with the coordinate axes, and (c)
proportional to the identity matrix, in
which the contours are concentric
circles.

x1

x2

(a)

x1

x2

(b)

x1

x2

(c)

therefore grows quadratically with D, and the computational task of manipulating
and inverting large matrices can become prohibitive. One way to address this prob-
lem is to use restricted forms of the covariance matrix. If we consider covariance
matrices that are diagonal, so that Σ = diag(σ2

i ), we then have a total of 2D inde-
pendent parameters in the density model. The corresponding contours of constant
density are given by axis-aligned ellipsoids. We could further restrict the covariance
matrix to be proportional to the identity matrix, Σ = σ2I, known as an isotropic co-
variance, giving D + 1 independent parameters in the model and spherical surfaces
of constant density. The three possibilities of general, diagonal, and isotropic covari-
ance matrices are illustrated in Figure 2.8. Unfortunately, whereas such approaches
limit the number of degrees of freedom in the distribution and make inversion of the
covariance matrix a much faster operation, they also greatly restrict the form of the
probability density and limit its ability to capture interesting correlations in the data.

A further limitation of the Gaussian distribution is that it is intrinsically uni-
modal (i.e., has a single maximum) and so is unable to provide a good approximation
to multimodal distributions. Thus the Gaussian distribution can be both too flexible,
in the sense of having too many parameters, while also being too limited in the range
of distributions that it can adequately represent. We will see later that the introduc-
tion of latent variables, also called hidden variables or unobserved variables, allows
both of these problems to be addressed. In particular, a rich family of multimodal
distributions is obtained by introducing discrete latent variables leading to mixtures
of Gaussians, as discussed in Section 2.3.9. Similarly, the introduction of continuous
latent variables, as described in Chapter 12, leads to models in which the number of
free parameters can be controlled independently of the dimensionality D of the data
space while still allowing the model to capture the dominant correlations in the data
set. Indeed, these two approaches can be combined and further extended to derive
a very rich set of hierarchical models that can be adapted to a broad range of prac-
tical applications. For instance, the Gaussian version of the Markov random field,Section 8.3
which is widely used as a probabilistic model of images, is a Gaussian distribution
over the joint space of pixel intensities but rendered tractable through the imposition
of considerable structure reflecting the spatial organization of the pixels. Similarly,
the linear dynamical system, used to model time series data for applications suchSection 13.3
as tracking, is also a joint Gaussian distribution over a potentially large number of
observed and latent variables and again is tractable due to the structure imposed on
the distribution. A powerful framework for expressing the form and properties of

Contours of 2-D Gaussian 

general diagonal identitycovariance
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as the product of its eigenvalues, and hence

|Σ|1/2 =
D∏

j=1

λ1/2
j . (2.55)

Thus in the yj coordinate system, the Gaussian distribution takes the form

p(y) = p(x)|J| =
D∏

j=1

1
(2πλj)1/2

exp
{
−

y2
j

2λj

}
(2.56)

which is the product of D independent univariate Gaussian distributions. The eigen-
vectors therefore define a new set of shifted and rotated coordinates with respect
to which the joint probability distribution factorizes into a product of independent
distributions. The integral of the distribution in the y coordinate system is then

∫
p(y) dy =

D∏

j=1

∫ ∞

−∞

1
(2πλj)1/2

exp
{
−

y2
j

2λj

}
dyj = 1 (2.57)

where we have used the result (1.48) for the normalization of the univariate Gaussian.
This confirms that the multivariate Gaussian (2.43) is indeed normalized.

We now look at the moments of the Gaussian distribution and thereby provide an
interpretation of the parameters µ and Σ. The expectation of x under the Gaussian
distribution is given by

E[x] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xdx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ) dz (2.58)

where we have changed variables using z = x − µ. We now note that the exponent
is an even function of the components of z and, because the integrals over these are
taken over the range (−∞,∞), the term in z in the factor (z + µ) will vanish by
symmetry. Thus

E[x] = µ (2.59)

and so we refer to µ as the mean of the Gaussian distribution.
We now consider second order moments of the Gaussian. In the univariate case,

we considered the second order moment given by E[x2]. For the multivariate Gaus-
sian, there are D2 second order moments given by E[xixj ], which we can group
together to form the matrix E[xxT]. This matrix can be written as

E[xxT] =
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
xxT dx

=
1

(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
(z + µ)(z + µ)T dz
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where again we have changed variables using z = x − µ. Note that the cross-terms
involving µzT and µTz will again vanish by symmetry. The term µµT is constant
and can be taken outside the integral, which itself is unity because the Gaussian
distribution is normalized. Consider the term involving zzT. Again, we can make
use of the eigenvector expansion of the covariance matrix given by (2.45), together
with the completeness of the set of eigenvectors, to write

z =
D∑

j=1

yjuj (2.60)

where yj = uT
j z, which gives

1
(2π)D/2

1
|Σ|1/2

∫
exp

{
−1

2
zTΣ−1z

}
zzT dz

=
1

(2π)D/2

1
|Σ|1/2

D∑

i=1

D∑

j=1

uiuT
j

∫
exp

{
−

D∑

k=1

y2
k

2λk

}
yiyj dy

=
D∑

i=1

uiuT
i λi = Σ (2.61)

where we have made use of the eigenvector equation (2.45), together with the fact
that the integral on the right-hand side of the middle line vanishes by symmetry
unless i = j, and in the final line we have made use of the results (1.50) and (2.55),
together with (2.48). Thus we have

E[xxT] = µµT + Σ. (2.62)

For single random variables, we subtracted the mean before taking second mo-
ments in order to define a variance. Similarly, in the multivariate case it is again
convenient to subtract off the mean, giving rise to the covariance of a random vector
x defined by

cov[x] = E
[
(x − E[x])(x − E[x])T

]
. (2.63)

For the specific case of a Gaussian distribution, we can make use of E[x] = µ,
together with the result (2.62), to give

cov[x] = Σ. (2.64)

Because the parameter matrix Σ governs the covariance of x under the Gaussian
distribution, it is called the covariance matrix.

Although the Gaussian distribution (2.43) is widely used as a density model, it
suffers from some significant limitations. Consider the number of free parameters in
the distribution. A general symmetric covariance matrix Σ will have D(D + 1)/2
independent parameters, and there are another D independent parameters in µ, giv-Exercise 2.21
ing D(D + 3)/2 parameters in total. For large D, the total number of parameters
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)
p(y|x) = N (y|Ax + b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)
p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

where
Σ = (Λ + ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian
Given a data set X = (x1, . . . ,xN )T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood. The log likeli-
hood function is given by

ln p(X|µ,Σ) = −ND

2
ln(2π)−N

2
ln |Σ|−1

2

N∑

n=1

(xn−µ)TΣ−1(xn−µ). (2.118)

By simple rearrangement, we see that the likelihood function depends on the data set
only through the two quantities

N∑

n=1

xn,
N∑

n=1

xnxT
n . (2.119)

These are known as the sufficient statistics for the Gaussian distribution. Using
(C.19), the derivative of the log likelihood with respect to µ is given byAppendix C

∂

∂µ
ln p(X|µ,Σ) =

N∑

n=1

Σ−1(xn − µ) (2.120)

and setting this derivative to zero, we obtain the solution for the maximum likelihood
estimate of the mean given by

µML =
1
N

N∑

n=1

xn (2.121)

Sufficient statistics
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)
p(y|x) = N (y|Ax + b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)
p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

where
Σ = (Λ + ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian
Given a data set X = (x1, . . . ,xN )T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can
estimate the parameters of the distribution by maximum likelihood. The log likeli-
hood function is given by

ln p(X|µ,Σ) = −ND
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Marginal and Conditional Gaussians

Given a marginal Gaussian distribution for x and a conditional Gaussian distri-
bution for y given x in the form

p(x) = N (x|µ,Λ−1) (2.113)
p(y|x) = N (y|Ax + b,L−1) (2.114)

the marginal distribution of y and the conditional distribution of x given y are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (2.115)
p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (2.116)

where
Σ = (Λ + ATLA)−1. (2.117)

2.3.4 Maximum likelihood for the Gaussian
Given a data set X = (x1, . . . ,xN )T in which the observations {xn} are as-

sumed to be drawn independently from a multivariate Gaussian distribution, we can
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These are known as the sufficient statistics for the Gaussian distribution. Using
(C.19), the derivative of the log likelihood with respect to µ is given byAppendix C
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which is the mean of the observed set of data points. The maximization of (2.118)
with respect to Σ is rather more involved. The simplest approach is to ignore the
symmetry constraint and show that the resulting solution is symmetric as required.Exercise 2.34
Alternative derivations of this result, which impose the symmetry and positive defi-
niteness constraints explicitly, can be found in Magnus and Neudecker (1999). The
result is as expected and takes the form

ΣML =
1
N

N∑

n=1

(xn − µML)(xn − µML)T (2.122)

which involves µML because this is the result of a joint maximization with respect
to µ and Σ. Note that the solution (2.121) for µML does not depend on ΣML, and so
we can first evaluate µML and then use this to evaluate ΣML.

If we evaluate the expectations of the maximum likelihood solutions under the
true distribution, we obtain the following resultsExercise 2.35

E[µML] = µ (2.123)

E[ΣML] =
N − 1

N
Σ. (2.124)

We see that the expectation of the maximum likelihood estimate for the mean is equal
to the true mean. However, the maximum likelihood estimate for the covariance has
an expectation that is less than the true value, and hence it is biased. We can correct
this bias by defining a different estimator Σ̃ given by

Σ̃ =
1

N − 1

N∑

n=1

(xn − µML)(xn − µML)T. (2.125)

Clearly from (2.122) and (2.124), the expectation of Σ̃ is equal to Σ.

2.3.5 Sequential estimation
Our discussion of the maximum likelihood solution for the parameters of a Gaus-

sian distribution provides a convenient opportunity to give a more general discussion
of the topic of sequential estimation for maximum likelihood. Sequential methods
allow data points to be processed one at a time and then discarded and are important
for on-line applications, and also where large data sets are involved so that batch
processing of all data points at once is infeasible.

Consider the result (2.121) for the maximum likelihood estimator of the mean
µML, which we will denote by µ(N)

ML when it is based on N observations. If we

It is semi-positive definite
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa
µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix
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corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)

Quadratic term Linear term
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain
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(xb − µb)

TΛba(xa − µa) − 1
2
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TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
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(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have
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from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain
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We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written
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2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have
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a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain
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2
(x − µ)TΣ−1(x − µ) =
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(xa − µa)TΛaa(xa − µa) − 1
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(xa − µa)TΛab(xb − µb)

−1
2
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TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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Now consider all of the terms in (2.70) that are linear in xa
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where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence
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= µa − Λ−1
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where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
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bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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Now consider all of the terms in (2.70) that are linear in xa
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where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence
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where we have made use of (2.73).
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matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
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Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24
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)
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where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition
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From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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Now consider all of the terms in (2.70) that are linear in xa

xT
a {Λaaµa − Λab(xb − µb)} (2.74)

where we have used ΛT
ba = Λab. From our discussion of the general form (2.71),

the coefficient of xa in this expression must equal Σ−1
a|bµa|b and hence

µa|b = Σa|b {Λaaµa − Λab(xb − µb)}
= µa − Λ−1

aa Λab(xb − µb) (2.75)

where we have made use of (2.73).
The results (2.73) and (2.75) are expressed in terms of the partitioned precision

matrix of the original joint distribution p(xa,xb). We can also express these results
in terms of the corresponding partitioned covariance matrix. To do this, we make use
of the following identity for the inverse of a partitioned matrixExercise 2.24

(
A B
C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)
(2.76)

where we have defined
M = (A − BD−1C)−1. (2.77)

The quantity M−1 is known as the Schur complement of the matrix on the left-hand
side of (2.76) with respect to the submatrix D. Using the definition

(
Σaa Σab

Σba Σbb

)−1

=
(

Λaa Λab

Λba Λbb

)
(2.78)

and making use of (2.76), we have

Λaa = (Σaa − ΣabΣ−1
bb Σba)−1 (2.79)

Λab = −(Σaa − ΣabΣ−1
bb Σba)−1ΣabΣ−1

bb . (2.80)

From these we obtain the following expressions for the mean and covariance of the
conditional distribution p(xa|xb)

µa|b = µa + ΣabΣ−1
bb (xb − µb) (2.81)

Σa|b = Σaa − ΣabΣ−1
bb Σba. (2.82)

Comparing (2.73) and (2.82), we see that the conditional distribution p(xa|xb) takes
a simpler form when expressed in terms of the partitioned precision matrix than
when it is expressed in terms of the partitioned covariance matrix. Note that the
mean of the conditional distribution p(xa|xb), given by (2.81), is a linear function of
xb and that the covariance, given by (2.82), is independent of xa. This represents an
example of a linear-Gaussian model.Section 8.1.4
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evaluated from the joint distribution p(x) = p(xa,xb) simply by fixing xb to the
observed value and normalizing the resulting expression to obtain a valid probability
distribution over xa. Instead of performing this normalization explicitly, we can
obtain the solution more efficiently by considering the quadratic form in the exponent
of the Gaussian distribution given by (2.44) and then reinstating the normalization
coefficient at the end of the calculation. If we make use of the partitioning (2.65),
(2.66), and (2.69), we obtain

−1
2
(x − µ)TΣ−1(x − µ) =

−1
2
(xa − µa)TΛaa(xa − µa) − 1

2
(xa − µa)TΛab(xb − µb)

−1
2
(xb − µb)

TΛba(xa − µa) − 1
2
(xb − µb)

TΛbb(xb − µb). (2.70)

We see that as a function of xa, this is again a quadratic form, and hence the cor-
responding conditional distribution p(xa|xb) will be Gaussian. Because this distri-
bution is completely characterized by its mean and its covariance, our goal will be
to identify expressions for the mean and covariance of p(xa|xb) by inspection of
(2.70).

This is an example of a rather common operation associated with Gaussian
distributions, sometimes called ‘completing the square’, in which we are given a
quadratic form defining the exponent terms in a Gaussian distribution, and we need
to determine the corresponding mean and covariance. Such problems can be solved
straightforwardly by noting that the exponent in a general Gaussian distribution
N (x|µ,Σ) can be written

−1
2
(x − µ)TΣ−1(x − µ) = −1

2
xTΣ−1x + xTΣ−1µ + const (2.71)

where ‘const’ denotes terms which are independent of x, and we have made use of
the symmetry of Σ. Thus if we take our general quadratic form and express it in
the form given by the right-hand side of (2.71), then we can immediately equate the
matrix of coefficients entering the second order term in x to the inverse covariance
matrix Σ−1 and the coefficient of the linear term in x to Σ−1µ, from which we can
obtain µ.

Now let us apply this procedure to the conditional Gaussian distribution p(xa|xb)
for which the quadratic form in the exponent is given by (2.70). We will denote the
mean and covariance of this distribution by µa|b and Σa|b, respectively. Consider
the functional dependence of (2.70) on xa in which xb is regarded as a constant. If
we pick out all terms that are second order in xa, we have

−1
2
xT

a Λaaxa (2.72)

from which we can immediately conclude that the covariance (inverse precision) of
p(xa|xb) is given by

Σa|b = Λ−1
aa . (2.73)
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2.3.2 Marginal Gaussian distributions
We have seen that if a joint distribution p(xa,xb) is Gaussian, then the condi-

tional distribution p(xa|xb) will again be Gaussian. Now we turn to a discussion of
the marginal distribution given by

p(xa) =
∫

p(xa,xb) dxb (2.83)

which, as we shall see, is also Gaussian. Once again, our strategy for evaluating this
distribution efficiently will be to focus on the quadratic form in the exponent of the
joint distribution and thereby to identify the mean and covariance of the marginal
distribution p(xa).

The quadratic form for the joint distribution can be expressed, using the par-
titioned precision matrix, in the form (2.70). Because our goal is to integrate out
xb, this is most easily achieved by first considering the terms involving xb and then
completing the square in order to facilitate integration. Picking out just those terms
that involve xb, we have

−1
2
xT

b Λbbxb+xT
b m = −1

2
(xb−Λ−1

bb m)TΛbb(xb−Λ−1
bb m)+

1
2
mTΛ−1

bb m (2.84)

where we have defined

m = Λbbµb − Λba(xa − µa). (2.85)

We see that the dependence on xb has been cast into the standard quadratic form of a
Gaussian distribution corresponding to the first term on the right-hand side of (2.84),
plus a term that does not depend on xb (but that does depend on xa). Thus, when
we take the exponential of this quadratic form, we see that the integration over xb

required by (2.83) will take the form
∫

exp
{
−1

2
(xb − Λ−1

bb m)TΛbb(xb − Λ−1
bb m)

}
dxb. (2.86)

This integration is easily performed by noting that it is the integral over an unnor-
malized Gaussian, and so the result will be the reciprocal of the normalization co-
efficient. We know from the form of the normalized Gaussian given by (2.43), that
this coefficient is independent of the mean and depends only on the determinant of
the covariance matrix. Thus, by completing the square with respect to xb, we can
integrate out xb and the only term remaining from the contributions on the left-hand
side of (2.84) that depends on xa is the last term on the right-hand side of (2.84) in
which m is given by (2.85). Combining this term with the remaining terms from
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa
µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be
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Figure 2.9 The plot on the left shows the contours of a Gaussian distribution p(xa, xb) over two variables, and
the plot on the right shows the marginal distribution p(xa) (blue curve) and the conditional distribution p(xa|xb)
for xb = 0.7 (red curve).

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
. (2.95)

Conditional distribution:

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (2.96)

µa|b = µa − Λ−1
aa Λab(xb − µb). (2.97)

Marginal distribution:

p(xa) = N (xa|µa,Σaa). (2.98)

We illustrate the idea of conditional and marginal distributions associated with
a multivariate Gaussian using an example involving two variables in Figure 2.9.

2.3.3 Bayes’ theorem for Gaussian variables
In Sections 2.3.1 and 2.3.2, we considered a Gaussian p(x) in which we parti-

tioned the vector x into two subvectors x = (xa,xb) and then found expressions for
the conditional distribution p(xa|xb) and the marginal distribution p(xa). We noted
that the mean of the conditional distribution p(xa|xb) was a linear function of xb.
Here we shall suppose that we are given a Gaussian marginal distribution p(x) and a
Gaussian conditional distribution p(y|x) in which p(y|x) has a mean that is a linear
function of x, and a covariance which is independent of x. This is an example of

Use the same trick, we can derive that

Leave it as your exercise
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can

A scalar Gaussian distribution
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Figure 2.13 Plot of the gamma distribution Gam(λ|a, b) defined by (2.146) for various values of the parameters
a and b.

The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a ! 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑

n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.
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The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a ! 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑

n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a ! 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42
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. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ
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N∑

n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N
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bN = b0 +
1
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2
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where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can

A scalar Gaussian distribution

Do we have a distribution over the precision? 

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

@ log
�
p(D|µML,⌃)

�

@⌃
= �N

2
⌃�1 +

1

2

NX

n=1

⌃�1(xn � µML)(xn � µML)
>⌃�1

x ⇠ N (x|µ,⌃)

p(xa|xb) = N (xa|µa|b,⌃a|b)

� = 1/�2

3

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

@ log
�
p(D|µML,⌃)

�

@⌃
= �N

2
⌃�1 +

1

2

NX

n=1

⌃�1(xn � µML)(xn � µML)
>⌃�1

x ⇠ N (x|µ,⌃)

p(xa|xb) = N (xa|µa|b,⌃a|b)

� = 1/�2

� > 0

3

100 2. PROBABILITY DISTRIBUTIONS

λ

a = 0.1
b = 0.1

0 1 2
0

1

2

λ

a = 1
b = 1

0 1 2
0

1

2

λ

a = 4
b = 6

0 1 2
0

1

2

Figure 2.13 Plot of the gamma distribution Gam(λ|a, b) defined by (2.146) for various values of the parameters
a and b.

The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a ! 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑

n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a ! 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑

n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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The corresponding conjugate prior should therefore be proportional to the product
of a power of λ and the exponential of a linear function of λ. This corresponds to
the gamma distribution which is defined by

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ). (2.146)

Here Γ(a) is the gamma function that is defined by (1.141) and that ensures that
(2.146) is correctly normalized. The gamma distribution has a finite integral if a > 0,Exercise 2.41
and the distribution itself is finite if a ! 1. It is plotted, for various values of a and
b, in Figure 2.13. The mean and variance of the gamma distribution are given byExercise 2.42

E[λ] =
a

b
(2.147)

var[λ] =
a

b2
. (2.148)

Consider a prior distribution Gam(λ|a0, b0). If we multiply by the likelihood
function (2.145), then we obtain a posterior distribution

p(λ|X) ∝ λa0−1λN/2 exp

{
−b0λ − λ

2

N∑

n=1

(xn − µ)2
}

(2.149)

which we recognize as a gamma distribution of the form Gam(λ|aN , bN ) where

aN = a0 +
N

2
(2.150)

bN = b0 +
1
2

N∑

n=1

(xn − µ)2 = b0 +
N

2
σ2

ML (2.151)

where σ2
ML is the maximum likelihood estimator of the variance. Note that in (2.149)

there is no need to keep track of the normalization constants in the prior and the
likelihood function because, if required, the correct coefficient can be found at the
end using the normalized form (2.146) for the gamma distribution.
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Inverse Gamma distribution is often used as a prior distribution over the 
Gaussian variance
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Figure 2.5 Plots of the Dirichlet distribution over three variables, where the two horizontal axes are coordinates
in the plane of the simplex and the vertical axis corresponds to the value of the density. Here {αk} = 0.1 on the
left plot, {αk} = 1 in the centre plot, and {αk} = 10 in the right plot.

modelled using the binomial distribution (2.9) or as 1-of-2 variables and modelled
using the multinomial distribution (2.34) with K = 2.

2.3. The Gaussian Distribution

The Gaussian, also known as the normal distribution, is a widely used model for the
distribution of continuous variables. In the case of a single variable x, the Gaussian
distribution can be written in the form

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(2.42)

where µ is the mean and σ2 is the variance. For a D-dimensional vector x, the
multivariate Gaussian distribution takes the form

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
(2.43)

where µ is a D-dimensional mean vector, Σ is a D × D covariance matrix, and |Σ|
denotes the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated
from a variety of different perspectives. For example, we have already seen that forSection 1.6
a single real variable, the distribution that maximizes the entropy is the Gaussian.
This property applies also to the multivariate Gaussian.Exercise 2.14

Another situation in which the Gaussian distribution arises is when we consider
the sum of multiple random variables. The central limit theorem (due to Laplace)
tells us that, subject to certain mild conditions, the sum of a set of random variables,
which is of course itself a random variable, has a distribution that becomes increas-
ingly Gaussian as the number of terms in the sum increases (Walker, 1969). We can
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa
µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be

Do we have a distribution over the precision matrix ? 
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa
µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be

Do we have a distribution over the precision matrix ? 
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa
µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be

Do we have a distribution over the precision matrix ? 
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such complex distributions is that of probabilistic graphical models, which will form
the subject of Chapter 8.

2.3.1 Conditional Gaussian distributions
An important property of the multivariate Gaussian distribution is that if two

sets of variables are jointly Gaussian, then the conditional distribution of one set
conditioned on the other is again Gaussian. Similarly, the marginal distribution of
either set is also Gaussian.

Consider first the case of conditional distributions. Suppose x is a D-dimensional
vector with Gaussian distribution N (x|µ,Σ) and that we partition x into two dis-
joint subsets xa and xb. Without loss of generality, we can take xa to form the first
M components of x, with xb comprising the remaining D−M components, so that

x =
(

xa

xb

)
. (2.65)

We also define corresponding partitions of the mean vector µ given by

µ =
(

µa
µb

)
(2.66)

and of the covariance matrix Σ given by

Σ =
(

Σaa Σab

Σba Σbb

)
. (2.67)

Note that the symmetry ΣT = Σ of the covariance matrix implies that Σaa and Σbb

are symmetric, while Σba = ΣT
ab.

In many situations, it will be convenient to work with the inverse of the covari-
ance matrix

Λ ≡ Σ−1 (2.68)

which is known as the precision matrix. In fact, we shall see that some properties
of Gaussian distributions are most naturally expressed in terms of the covariance,
whereas others take a simpler form when viewed in terms of the precision. We
therefore also introduce the partitioned form of the precision matrix

Λ =
(

Λaa Λab

Λba Λbb

)
(2.69)

corresponding to the partitioning (2.65) of the vector x. Because the inverse of a
symmetric matrix is also symmetric, we see that Λaa and Λbb are symmetric, whileExercise 2.22
ΛT

ab = Λba. It should be stressed at this point that, for instance, Λaa is not simply
given by the inverse of Σaa. In fact, we shall shortly examine the relation between
the inverse of a partitioned matrix and the inverses of its partitions.

Let us begin by finding an expression for the conditional distribution p(xa|xb).
From the product rule of probability, we see that this conditional distribution can be

Do we have a distribution over the precision matrix ? 
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Inverse Wishart distribution is often used as a prior distribution over the 
covariance matrixs of the multivariate Gaussian dist.
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Student t’s distribution

• Infinite mixture of Gaussian distribution

Suppose we have a Gaussian random variable
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If we place a Gamma prior distribution over the precision 
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What is the marginal distribution of 
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2.3. The Gaussian Distribution 103

Figure 2.15 Plot of Student’s t-distribution (2.159)
for µ = 0 and λ = 1 for various values
of ν. The limit ν → ∞ corresponds
to a Gaussian distribution with mean
µ and precision λ.
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where we have made the change of variable z = τ [b + (x − µ)2/2]. By convention
we define new parameters given by ν = 2a and λ = a/b, in terms of which the
distribution p(x|µ, a, b) takes the form
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(2.159)

which is known as Student’s t-distribution. The parameter λ is sometimes called the
precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of ν = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit ν → ∞ the t-distribution St(x|µ, λ, ν)
becomes a Gaussian N (x|µ, λ−1) with mean µ and precision λ.Exercise 2.47

From (2.158), we see that Student’s t-distribution is obtained by adding up an
infinite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number ofExercise 12.24

Student t’s distribution
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precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of ν = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit ν → ∞ the t-distribution St(x|µ, λ, ν)
becomes a Gaussian N (x|µ, λ−1) with mean µ and precision λ.Exercise 2.47

From (2.158), we see that Student’s t-distribution is obtained by adding up an
infinite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number ofExercise 12.24
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Figure 2.15 Plot of Student’s t-distribution (2.159)
for µ = 0 and λ = 1 for various values
of ν. The limit ν → ∞ corresponds
to a Gaussian distribution with mean
µ and precision λ.
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precision of the t-distribution, even though it is not in general equal to the inverse
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precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
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distribution an important property called robustness, which means that it is much less
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where we have made the change of variable z = τ [b + (x − µ)2/2]. By convention
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which is known as Student’s t-distribution. The parameter λ is sometimes called the
precision of the t-distribution, even though it is not in general equal to the inverse
of the variance. The parameter ν is called the degrees of freedom, and its effect is
illustrated in Figure 2.15. For the particular case of ν = 1, the t-distribution reduces
to the Cauchy distribution, while in the limit ν → ∞ the t-distribution St(x|µ, λ, ν)
becomes a Gaussian N (x|µ, λ−1) with mean µ and precision λ.Exercise 2.47

From (2.158), we see that Student’s t-distribution is obtained by adding up an
infinite number of Gaussian distributions having the same mean but different preci-
sions. This can be interpreted as an infinite mixture of Gaussians (Gaussian mixtures
will be discussed in detail in Section 2.3.9. The result is a distribution that in gen-
eral has longer ‘tails’ than a Gaussian, as was seen in Figure 2.15. This gives the t-
distribution an important property called robustness, which means that it is much less
sensitive than the Gaussian to the presence of a few data points which are outliers.
The robustness of the t-distribution is illustrated in Figure 2.16, which compares the
maximum likelihood solutions for a Gaussian and a t-distribution. Note that the max-
imum likelihood solution for the t-distribution can be found using the expectation-
maximization (EM) algorithm. Here we see that the effect of a small number ofExercise 12.24
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Figure 2.16 Illustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
a/b, and η = τb/a, we see that the t-distribution can be written in the form

St(x|µ, λ, ν) =
∫ ∞

0

N
(
x|µ, (ηλ)−1

)
Gam(η|ν/2, ν/2) dη. (2.160)

We can then generalize this to a multivariate Gaussian N (x|µ,Λ) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|µ,Λ, ν) =
∫ ∞

0

N (x|µ, (ηΛ)−1)Gam(η|ν/2, ν/2) dη. (2.161)

Using the same technique as for the univariate case, we can evaluate this integral to
giveExercise 2.48
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Figure 2.16 Illustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
a/b, and η = τb/a, we see that the t-distribution can be written in the form

St(x|µ, λ, ν) =
∫ ∞

0

N
(
x|µ, (ηλ)−1

)
Gam(η|ν/2, ν/2) dη. (2.160)

We can then generalize this to a multivariate Gaussian N (x|µ,Λ) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|µ,Λ, ν) =
∫ ∞

0

N (x|µ, (ηΛ)−1)Gam(η|ν/2, ν/2) dη. (2.161)

Using the same technique as for the univariate case, we can evaluate this integral to
giveExercise 2.48
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Figure 2.16 Illustration of the robustness of Student’s t-distribution compared to a Gaussian. (a) Histogram
distribution of 30 data points drawn from a Gaussian distribution, together with the maximum likelihood fit ob-
tained from a t-distribution (red curve) and a Gaussian (green curve, largely hidden by the red curve). Because
the t-distribution contains the Gaussian as a special case it gives almost the same solution as the Gaussian.
(b) The same data set but with three additional outlying data points showing how the Gaussian (green curve) is
strongly distorted by the outliers, whereas the t-distribution (red curve) is relatively unaffected.

outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
a/b, and η = τb/a, we see that the t-distribution can be written in the form

St(x|µ, λ, ν) =
∫ ∞

0

N
(
x|µ, (ηλ)−1

)
Gam(η|ν/2, ν/2) dη. (2.160)

We can then generalize this to a multivariate Gaussian N (x|µ,Λ) to obtain the cor-
responding multivariate Student’s t-distribution in the form

St(x|µ,Λ, ν) =
∫ ∞

0

N (x|µ, (ηΛ)−1)Gam(η|ν/2, ν/2) dη. (2.161)

Using the same technique as for the univariate case, we can evaluate this integral to
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outliers is much less significant for the t-distribution than for the Gaussian. Outliers
can arise in practical applications either because the process that generates the data
corresponds to a distribution having a heavy tail or simply through mislabelled data.
Robustness is also an important property for regression problems. Unsurprisingly,
the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.

If we go back to (2.158) and substitute the alternative parameters ν = 2a, λ =
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Using the same technique as for the univariate case, we can evaluate this integral to
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can arise in practical applications either because the process that generates the data
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the least squares approach to regression does not exhibit robustness, because it cor-
responds to maximum likelihood under a (conditional) Gaussian distribution. By
basing a regression model on a heavy-tailed distribution such as a t-distribution, we
obtain a more robust model.
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2.3. The Gaussian Distribution 105

St(x|µ,Λ, ν) =
Γ(D/2 + ν/2)

Γ(ν/2)
|Λ|1/2

(πν)D/2

[
1 +

∆2

ν

]−D/2−ν/2

(2.162)

where D is the dimensionality of x, and ∆2 is the squared Mahalanobis distance
defined by

∆2 = (x − µ)TΛ(x − µ). (2.163)

This is the multivariate form of Student’s t-distribution and satisfies the following
propertiesExercise 2.49

E[x] = µ, if ν > 1 (2.164)

cov[x] =
ν

(ν − 2)
Λ−1, if ν > 2 (2.165)

mode[x] = µ (2.166)

with corresponding results for the univariate case.

2.3.8 Periodic variables
Although Gaussian distributions are of great practical significance, both in their

own right and as building blocks for more complex probabilistic models, there are
situations in which they are inappropriate as density models for continuous vari-
ables. One important case, which arises in practical applications, is that of periodic
variables.

An example of a periodic variable would be the wind direction at a particular
geographical location. We might, for instance, measure values of wind direction on a
number of days and wish to summarize this using a parametric distribution. Another
example is calendar time, where we may be interested in modelling quantities that
are believed to be periodic over 24 hours or over an annual cycle. Such quantities
can conveniently be represented using an angular (polar) coordinate 0 ! θ < 2π.

We might be tempted to treat periodic variables by choosing some direction
as the origin and then applying a conventional distribution such as the Gaussian.
Such an approach, however, would give results that were strongly dependent on the
arbitrary choice of origin. Suppose, for instance, that we have two observations at
θ1 = 1◦ and θ2 = 359◦, and we model them using a standard univariate Gaussian
distribution. If we choose the origin at 0◦, then the sample mean of this data set
will be 180◦ with standard deviation 179◦, whereas if we choose the origin at 180◦,
then the mean will be 0◦ and the standard deviation will be 1◦. We clearly need to
develop a special approach for the treatment of periodic variables.

Let us consider the problem of evaluating the mean of a set of observations
D = {θ1, . . . , θN} of a periodic variable. From now on, we shall assume that θ is
measured in radians. We have already seen that the simple average (θ1+· · ·+θN )/N
will be strongly coordinate dependent. To find an invariant measure of the mean, we
note that the observations can be viewed as points on the unit circle and can therefore
be described instead by two-dimensional unit vectors x1, . . . ,xN where ‖xn‖ = 1
for n = 1, . . . , N , as illustrated in Figure 2.17. We can average the vectors {xn}

Multivariate student-t distribution

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

@ log
�
p(D|µML,⌃)

�

@⌃
= �N

2
⌃�1 +

1

2

NX

n=1

⌃�1(xn � µML)(xn � µML)
>⌃�1

x ⇠ N (x|µ,⌃)

p(xa|xb) = N (xa|µa|b,⌃a|b)

� = 1/�2

� > 0

E[log(�)] =  (a)� log(b)

a > 0, b > 0

� ⇠ Gamma(�|a, b)
��1 ⇠ InvGamma(�|a, b)

W(⇤|W, ⌫) =
|⇤|(⌫�d�1)/2 exp

�
� 1

2 tr(W
�1⇤)

�

2
d⌫
2 |W|⌫/2�d(

⌫
2 )

W � 0

⌫ > d� 1

⇤ ⇠ W(⇤|W, ⌫)

⇤�1 ⇠ W(⇤|W�1, ⌫)

p(x|µ, ⌧) = N (x|µ, ⌧�1)

p(⌧ |a, b) = Gamma(⌧ |a, b)
x

p(x|µ, a, b) =
Z 1

0
p(x|µ, ⌧)p(⌧ |a, b)d⌧

⌫ ! 1
St(x|µ,�, ⌫) ! N (x|µ,��1)

⌫ > 0

⌫ = 2a,� = a/b, ⌘ = ⌧b/a

St(x|µ,⇤, ⌫) =
�(d/2 + ⌫/2)

�(⌫/2)

|⇤|1/2

(⇡⌫)d/2
[1 +

1

⌫
(x� µ)>⇤(x� µ)]�d/2�⌫/2

x ⇠ St(x|µ,⇤, ⌫)

3

Conditional distribution 

Ding, Peng. "On the conditional distribution of 
the multivariate t distribution." The American 
Statistician 70.3 (2016): 293-295.

Shah, Amar, Andrew Wilson, and Zoubin 
Ghahramani. "Student-t processes as 
alternatives to Gaussian processes." Artificial 
intelligence and statistics. 2014.

https://arxiv.org/pdf/1604.00561.pdf
https://arxiv.org/pdf/1604.00561.pdf
http://proceedings.mlr.press/v33/shah14.pdf
http://proceedings.mlr.press/v33/shah14.pdf


What you need to know

• The commonly used distributions for binary, 
categorical, continuous random variables

• For multi-variate Gaussian distribution, know how to 
derive the conditional distribution and marginal 
distribution

• The commonly used prior distribution of the 
distribution parameters (Gamma, Beta, Dirichlet…)

• Know how the student t distribution is derived and 
its heavy tail property. 
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