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Sample Spaces

Definition

A sample space is a set {2 consisting of all possible
outcomes of a random experiment.

» Discrete Examples
» Tossing acoin: Q@ = {H, T}
» Rolling adie: Q = {1,2,3,4,5,6}
» Radioactive decay, number of particles emitted per
minute: 2 = N=4{0,1,2,...}
» Continuous Examples
» Measuring height of spruce trees: {2 = [0, 00)
» Image pixel values: Q2 = [0, M]



Events

Definition
An event in a sample space € is a subset A C ().

Examples:

» In the die rolling sample space, consider the event
“An even number is rolled”. This is the event
A ={2,4,6}.

» In the spruce tree example, consider the event “The

tree is taller than 80 feet”. This is the event
A = (80, 00).



Operations on Events

Given two events A, B of a sample space (2.

» Union:AUB “or” operation
» Intersection: A N B “and” operation
> Complement: A “negation” operation

» Subtraction: A — B A happens, B does not



Event Spaces

Given a sample space (2, the space of all possible
events F must satisfy several rules:

» e F
> IfAl,Az,...EF,thenUfi]AiE]:.
»IfAe]:,thenAE}—.

Definition

A set F C 2% that satisfies the above rules is called a
c-algebra.




Probability Measures

A measure on a o-algebra F is a function
p: F — [0, 00) satisfying
> w(0) =0
» For pairwise disjoint sets A;, Ay, ... € F,

M(U?il A;) = 221 1(A;)

Definition

A measure P on (€2, F) is a probability measure if
P(Q) =1.




Probability Spaces

A probability space is a triple ({2, F, P), where
1. () is a set, called the sample space,

2. JF is a o-algebra, called the event space,

3. and P is a measure on (2, F) with P(Q2) = 1,
called the probability measure.




Some Properties of Probability Measures

For any probability measure P and events A, B:

» P(A)=1—-P(A)
» PLAUB) = P(A) + P(B) — P(ANB)



Conditional Probability

Definition
Given a probability space (€2, F, P), the conditional
probability of an event A given the event B is defined as

P(ANB)

Die Example:
LetA = {2} and B = {2,4,6}. P(A) = }, but

__ P(ANB) __ 1/6 1
P(AIB) = "y = 15 = &



Independence

Definition
Let A and B be two events in a sample space. We say A
and B are independent given that

P(ANB) = P(A)P(B).

Two events that are not independent are called
dependent.




Independence

Consider two events A and B in a sample space.
If the probability of A doesn’t depend on B, then
P(A|B) = P(A).

Notice, P(A) = P(A|B) = P(A N B)/P(B). Multiplying
by P(B) gives us

P(AN B) = P(A)P(B)

We get the same result if we start with P(B|A) = P(B).



Independence

Let A and B be two events in a probability space
(Q, F, P). The following conditions are equivalent:

1. P(A|B) = P(A)
2. P(B|A) = P(B)
3. P(ANB) = P(A)P(B)




Random Variables

Definition

A random variable is a function defined on a probability
space. In other words, if (€2, F, P) is a probability
space, then a random variable is a function X : 2 — V
for some set V.

Note:
» A random variable is neither random nor a variable.

» We will deal with integer-valued (V = Z) or
real-valued (V = RR) random variables.

» Technically, random variables are measurable
functions.



Dice Example

Let (€2, F, P) be the probability space for rolling a pair of
dice, and let X : 2 — Z be the random variable that
gives the sum of the numbers on the two dice. So,

X[(1,2)] =3, X[(4,4)]=28, X[(6,5]=11



Even Simpler Example

Most of the time the random variable X will just be the
identity function. For example, if the sample space is the
real line, £} = R, the identity function

X R—>R,
X(s)=s

is a random variable.



Defining Events via Random Variables

Setting a real-valued random variable to a value or range
of values defines an event.

X=x]={se€Q:X(s) =x}

X <x]={se€Q:X(s) <x}
a<X<b={seQ:a<X(s) <b}



Cumulative Distribution Functions

Definition
Let X be a real-valued random variable on the probability
space (€2, F, P). Then the cumulative distribution

function (cdf) of X is defined as

F(x) = P(X < x)




Properties of CDFs

Let X be a real-valued random variable with cdf F. Then
F has the following properties:

1. F'is monotonic increasing.
2. Fis right-continuous, that is,

lim F(x+¢) = F(x), forallx € R.

e—07t

3. lim F(x) =0and lim F(x) = 1.

X——00 X—00



Probability Mass Functions (Discrete)

Definition
The probability mass function (pmf) for a discrete
real-valued random variable X, denoted p, is defined as

p(x) = P(X =x).

The cdf can be defined in terms of the pmf as

F(x) =P(X <x) Zp

k<x



Probability Density Functions (Continuous)

The probability density function (pdf) for a continuous
real-valued random variable X, denoted p, is defined as

d

p(X) - EF(XL

when this derivative exists.

The cdf can be defined in terms of the pdf as

X

Flx)=P(X<x) = / p(1) dt.

—00



Example: Uniform Distribution

X ~ Unif(0, 1)

“X is uniformly distributed between O and 1.

1 0<x<1
0 otherwise

0 x<O
Fx)=<x 0<x<1
1 x>1



Transforming a Random Variable

Consider a differentiable function f : R — R that
transforms a random variable X into a random variable Y
by ¥ = f(X). Then the pdf of Y is given by

d

py) = 5

(f‘l(y))‘p(f‘l(y))



Expectation

The expectation of a continuous random variable X is

B[X] — / " xp()dx.

(©.¢]

The expectation of a discrete random variable X is

E[X] = inP(X = x;)

This is the “mean” value of X, also denoted 11y = E[X].



Linearity of Expectation

If X and Y are random variables, and a, b € R, then
ElaX + bY] = aE[X] + DEIY].
This extends the several random variables X; and

constants a;:

N N
E ZaiXi = ZCZZE[X,]
i=1 i=1




Expectation of a Function of a RV

We can also take the expectation of any continuous
function of a random variable. Let g : R — R be a
continuous function and X a random variable, then

Elg(x)) = [ " g p(x)dx.

oo

Or, in the discrete case,

Elg(X)] = Zg(xi) P(X = x;).



Variance

Definition
The variance of a random variable X is defined as

Var(X) = E[(X — px)’].

» This formula is equivalent to
Var(X) = E[X?] — 3.

» The variance is a measure of the “spread” of the
distribution.

» The standard deviation is the sqrt of variance:
ox = 4/ Var(X).



Example: Normal Distribution

X ~ N(:uv 0)
“X is normally distributed with mean p and standard
deviation o
1 (x — u)2>
X) = exp | —
100 = oo (-
E[X] =
Var(X) = o?



Joint Distributions

Recall that given two events A, B, we can talk about the
intersection of the two events A M B and the probability
P(A N B) of both events happening.

Given two random variables, X, Y, we can also talk
about the intersection of the events these variables
define. The distribution defined this way is called the
joint distribution:

Flr.y) = P(X <x,¥ <y) = P(IX < x]N[Y <))



Joint Densities

Just like the univariate case, we take derivatives to get
the joint pdf of X and Y:

82
p(x,y) = axayF(x, y).

And just like before, we can recover the cdf by
integrating the pdf,

Flx,y) = /_ ’; /_ OO p(s. 1) dsdt.



Marginal Distributions

Given a joint probability density p(x, y), the marginal
densities of X and Y are given by

p(x) = / oop(x,y)dy, and

o

p(y) = /_ ) p(x,y)dx.

oo

The discrete case just replaces integrals with sums:

p(x) = Zp(x, ), ply) = Zp(xi,y)-



Cold Example: Probability Tables

Two Bernoulli random variables:
C = cold/no cold = (1/0)
R = runny nose / no runny nose = (1/0)

Joint pmf:

0]0.40 |0.05

1]0.30|0.25




Cold Example: Marginals

C
0 1

0(0.50 | 0.05

1]0.20|0.25

Marginals:
P(R=0)=0.55 P(R=1)=045

P(C=0)=0.70, P(C=1)=0.30



Conditional Densities

If X, Y are random variables with joint density p(x, y),
then the conditional density of X given Y = yis

_ ()




Cold Example: Conditional Probabilities

C
0 1

0]0.50 | 0.05|0.55

1,0.20 | 0.25 | 0.45

0.7 0.3
Conditional Probabilities:
0.50
P(C=0R=0)=—~0091
( | ) 0.55
0.25
P(C: 1|R: 1) = ——~0.56

0.45



Independent Random Variables

Definition
Two random variables X, Y are called independent if

p(x,y) = p(xX)p(y).

If we integrate (or sum) both sides, we see this is
equivalent to

F(x,y) = F(x)F(y).



Conditional Expectation

Definition
Given two random variables X, Y, the conditional

expectation of X given Y =y is
Continuous case:

EX|Y =y] = /_OO xp(x|y)dx

0
Discrete case:

EX|Y =y] = le X=xY=y)




Expectation of the Product of Two RVs

We can take the expected value of the product of two
random variables, X and Y:

E[XY] = / / xyp(x,y)dxdy.



Covariance

Definition
The covariance of two random variables X and Y is

Cov(X,Y) = E[(X — ux)(Y — puy)]

This is a measure of how much the variables X and Y
“change together”.

We'll also write oxy = Cov(X,Y).



Correlation

The correlation of two random variables X and Y is

pX,¥) = 2L o
O0x0Oy

=l (5) (5]

Correlation normalizes the covariance between [—1, 1].




Independent RVs are Uncorrelated

If X and Y are two independent RVs, then

/ / xyp(x,y) dxdy
/ / xyp(x)p(y) dxdy
—/OO p(x )dX/ooyp(y)dy

= E[X] E[Y] = pxpy

So, oxy — E[XY] — Uxy = 0.



More on Independence and Correlation

Warning: Independence implies uncorrelation, but
uncorrelated variables are not necessarily independent!

Independence = Uncorrelated
Uncorrelated % Independence

OR

Correlated = Dependent
Dependent % Correlated



