
1

Basic Concepts

Machine	Learning
Fall	2017

Supervised	Learning:	The	Setup

1

Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu

School of Computing

mailto:zhe@cs.Utah.edu


Sample Spaces

Definition

A sample space is a set ⌦ consisting of all possible

outcomes of a random experiment.

I Discrete Examples

I Tossing a coin: ⌦ = {H, T}
I Rolling a die: ⌦ = {1, 2, 3, 4, 5, 6}
I Radioactive decay, number of particles emitted per

minute: ⌦ = N = {0, 1, 2, . . .}
I Continuous Examples

I Measuring height of spruce trees: ⌦ = [0,1)
I Image pixel values: ⌦ = [0,M]



Events

Definition

An event in a sample space ⌦ is a subset A ✓ ⌦.

Examples:

I In the die rolling sample space, consider the event

“An even number is rolled”. This is the event

A = {2, 4, 6}.

I In the spruce tree example, consider the event “The

tree is taller than 80 feet”. This is the event

A = (80,1).



Operations on Events

Given two events A,B of a sample space ⌦.

I Union: A [ B “or” operation

I Intersection: A \ B “and” operation

I Complement: Ā “negation” operation

I Subtraction: A � B A happens, B does not



Event Spaces

Given a sample space ⌦, the space of all possible

events F must satisfy several rules:

I ; 2 F
I If A1,A2, . . . 2 F , then

S1
i=1 Ai 2 F .

I If A 2 F , then Ā 2 F .

Definition

A set F ✓ 2⌦
that satisfies the above rules is called a

�-algebra.



Probability Measures

Definition

A measure on a �-algebra F is a function

µ : F ! [0,1) satisfying

I µ(;) = 0
I For pairwise disjoint sets A1,A2, . . . 2 F ,

µ(
S1

i=1 Ai) =
P1

i=1 µ(Ai)

Definition

A measure P on (⌦,F) is a probability measure if

P(⌦) = 1.



Probability Spaces

Definition

A probability space is a triple (⌦,F ,P), where

1. ⌦ is a set, called the sample space,

2. F is a �-algebra, called the event space,

3. and P is a measure on (⌦,F) with P(⌦) = 1,

called the probability measure.



Some Properties of Probability Measures

For any probability measure P and events A,B:

I P(Ā) = 1 � P(A)
I P(A [ B) = P(A) + P(B)� P(A \ B)



Conditional Probability

Definition

Given a probability space (⌦,F ,P), the conditional
probability of an event A given the event B is defined as

P(A|B) = P(A \ B)

P(B)

Die Example:

Let A = {2} and B = {2, 4, 6}. P(A) = 1
6 , but

P(A|B) = P(A\B)
P(B) = 1/6

1/2 = 1
3 .



Independence

Definition

Let A and B be two events in a sample space. We say A

and B are independent given that

P(A \ B) = P(A)P(B).

Two events that are not independent are called

dependent.



Independence

Consider two events A and B in a sample space.

If the probability of A doesn’t depend on B, then

P(A|B) = P(A).

Notice, P(A) = P(A|B) = P(A \ B)/P(B). Multiplying

by P(B) gives us

P(A \ B) = P(A)P(B)

We get the same result if we start with P(B|A) = P(B).



Independence

Theorem

Let A and B be two events in a probability space
(⌦,F ,P). The following conditions are equivalent:

1. P(A|B) = P(A)

2. P(B|A) = P(B)

3. P(A \ B) = P(A)P(B)



Random Variables

Definition

A random variable is a function defined on a probability

space. In other words, if (⌦,F ,P) is a probability

space, then a random variable is a function X : ⌦ ! V

for some set V .

Note:

I A random variable is neither random nor a variable.

I We will deal with integer-valued (V = Z) or

real-valued (V = R) random variables.

I Technically, random variables are measurable
functions.



Dice Example

Let (⌦,F ,P) be the probability space for rolling a pair of

dice, and let X : ⌦ ! Z be the random variable that

gives the sum of the numbers on the two dice. So,

X[(1, 2)] = 3, X[(4, 4)] = 8, X[(6, 5)] = 11



Even Simpler Example

Most of the time the random variable X will just be the

identity function. For example, if the sample space is the

real line, ⌦ = R, the identity function

X : R ! R,
X(s) = s

is a random variable.



Defining Events via Random Variables

Setting a real-valued random variable to a value or range

of values defines an event.

[X = x] = {s 2 ⌦ : X(s) = x}
[X < x] = {s 2 ⌦ : X(s) < x}

[a < X < b] = {s 2 ⌦ : a < X(s) < b}



Cumulative Distribution Functions

Definition

Let X be a real-valued random variable on the probability

space (⌦,F ,P). Then the cumulative distribution
function (cdf) of X is defined as

F(x) = P(X  x)



Properties of CDFs

Let X be a real-valued random variable with cdf F. Then

F has the following properties:

1. F is monotonic increasing.

2. F is right-continuous, that is,

lim
✏!0+

F(x + ✏) = F(x), for all x 2 R.

3. lim
x!�1

F(x) = 0 and lim
x!1

F(x) = 1.



Probability Mass Functions (Discrete)

Definition

The probability mass function (pmf) for a discrete

real-valued random variable X, denoted p, is defined as

p(x) = P(X = x).

The cdf can be defined in terms of the pmf as

F(x) = P(X  x) =
X

kx

p(k).



Probability Density Functions (Continuous)

Definition

The probability density function (pdf) for a continuous

real-valued random variable X, denoted p, is defined as

p(x) =
d

dx
F(x),

when this derivative exists.

The cdf can be defined in terms of the pdf as

F(x) = P(X  x) =

Z
x

�1
p(t) dt.



Example: Uniform Distribution

X ⇠ Unif(0, 1)

“X is uniformly distributed between 0 and 1.”

p(x) =

(
1 0  x  1
0 otherwise

F(x) =

8
><

>:

0 x < 0
x 0  x  1
1 x > 1



Transforming a Random Variable

Consider a differentiable function f : R ! R that

transforms a random variable X into a random variable Y

by Y = f (X). Then the pdf of Y is given by

p(y) =

����
d

dy
( f

�1(y))

���� p( f
�1(y))



Expectation

Definition

The expectation of a continuous random variable X is

E[X] =
Z 1

�1
x p(x)dx.

The expectation of a discrete random variable X is

E[X] =
X

i

xi P(X = xi)

This is the “mean” value of X, also denoted µX = E[X].



Linearity of Expectation

If X and Y are random variables, and a, b 2 R, then

E[aX + bY] = a E[X] + b E[Y].

This extends the several random variables Xi and

constants ai:

E

"
NX

i=1

aiXi

#
=

NX

i=1

ai E[Xi].



Expectation of a Function of a RV

We can also take the expectation of any continuous

function of a random variable. Let g : R ! R be a

continuous function and X a random variable, then

E[g(X)] =
Z 1

�1
g(x) p(x)dx.

Or, in the discrete case,

E[g(X)] =
X

i

g(xi)P(X = xi).



Variance

Definition

The variance of a random variable X is defined as

Var(X) = E[(X � µX)
2].

I This formula is equivalent to

Var(X) = E[X2]� µ2
X
.

I The variance is a measure of the “spread” of the

distribution.

I The standard deviation is the sqrt of variance:

�X =
p

Var(X).



Example: Normal Distribution

X ⇠ N(µ, �)

“X is normally distributed with mean µ and standard

deviation �.”

f (x) =
1p
2⇡�

exp
✓
�(x � µ)2

2�2

◆

E[X] = µ

Var(X) = �2



Joint Distributions

Recall that given two events A,B, we can talk about the

intersection of the two events A \ B and the probability

P(A \ B) of both events happening.

Given two random variables, X, Y , we can also talk

about the intersection of the events these variables

define. The distribution defined this way is called the

joint distribution:

F(x, y) = P(X  x, Y  y) = P([X  x] \ [Y  y]).



Joint Densities

Just like the univariate case, we take derivatives to get

the joint pdf of X and Y :

p(x, y) =
@2

@x@y
F(x, y).

And just like before, we can recover the cdf by

integrating the pdf,

F(x, y) =

Z
y

�1

Z
x

�1
p(s, t) ds dt.



Marginal Distributions

Definition

Given a joint probability density p(x, y), the marginal
densities of X and Y are given by

p(x) =

Z 1

�1
p(x, y)dy, and

p(y) =

Z 1

�1
p(x, y)dx.

The discrete case just replaces integrals with sums:

p(x) =
X

j

p(x, yj), p(y) =
X

i

p(xi, y).



Cold Example: Probability Tables

Two Bernoulli random variables:

C = cold / no cold = (1/0)
R = runny nose / no runny nose = (1/0)

Joint pmf:

C

0 1

R

0 0.40 0.05

1 0.30 0.25



Cold Example: Marginals

C

0 1

R

0 0.50 0.05

1 0.20 0.25

Marginals:

P(R = 0) = 0.55, P(R = 1) = 0.45

P(C = 0) = 0.70, P(C = 1) = 0.30



Conditional Densities

Definition

If X, Y are random variables with joint density p(x, y),
then the conditional density of X given Y = y is

p(x|y) = p(x, y)

p(y)
.



Cold Example: Conditional Probabilities

C

0 1

R

0 0.50 0.05 0.55

1 0.20 0.25 0.45

0.7 0.3

Conditional Probabilities:

P(C = 0|R = 0) =
0.50
0.55

⇡ 0.91

P(C = 1|R = 1) =
0.25
0.45

⇡ 0.56



Independent Random Variables

Definition

Two random variables X, Y are called independent if

p(x, y) = p(x)p(y).

If we integrate (or sum) both sides, we see this is

equivalent to

F(x, y) = F(x)F(y).



Conditional Expectation

Definition

Given two random variables X, Y , the conditional
expectation of X given Y = y is

Continuous case:

E[X|Y = y] =

Z 1

�1
x p(x|y)dx

Discrete case:

E[X|Y = y] =
X

i

xi P(X = xi|Y = y)



Expectation of the Product of Two RVs

We can take the expected value of the product of two

random variables, X and Y :

E[XY] =

Z 1

�1

Z 1

�1
xy p(x, y) dx dy.



Covariance

Definition

The covariance of two random variables X and Y is

Cov(X, Y) = E[(X � µX)(Y � µY)]

= E[XY]� µXµY .

This is a measure of how much the variables X and Y

“change together”.

We’ll also write �XY = Cov(X, Y).



Correlation

Definition

The correlation of two random variables X and Y is

⇢(X, Y) =
�XY

�X�Y

, or

⇢(X, Y) = E

✓
X � µX

�X

◆✓
Y � µY

�Y

◆�
.

Correlation normalizes the covariance between [�1, 1].



Independent RVs are Uncorrelated

If X and Y are two independent RVs, then

E[XY] =

Z 1

�1

Z 1

�1
xy p(x, y) dx dy

=

Z 1

�1

Z 1

�1
xy p(x)p(y) dx dy

=

Z 1

�1
x p(x) dx

Z 1

�1
y p(y) dy

= E[X]E[Y] = µXµY

So, �XY = E[XY]� µXµY = 0.



More on Independence and Correlation

Warning: Independence implies uncorrelation, but

uncorrelated variables are not necessarily independent!

Independence ) Uncorrelated

Uncorrelated ; Independence

OR

Correlated ) Dependent

Dependent ; Correlated


