Basic Concepts

$$
\text { Spring } 2024
$$

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing
U
THE
UNIVERSITY OF UTAH

Sample Spaces

Definition

A sample space is a set Ω consisting of all possible outcomes of a random experiment.

- Discrete Examples
- Tossing a coin: $\Omega=\{H, T\}$
- Rolling a die: $\Omega=\{1,2,3,4,5,6\}$
- Radioactive decay, number of particles emitted per minute: $\Omega=\mathbb{N}=\{0,1,2, \ldots\}$
- Continuous Examples
- Measuring height of spruce trees: $\Omega=[0, \infty)$
- Image pixel values: $\Omega=[0, M]$

Events

Definition

An event in a sample space Ω is a subset $A \subseteq \Omega$.
Examples:

- In the die rolling sample space, consider the event "An even number is rolled". This is the event $A=\{2,4,6\}$.
- In the spruce tree example, consider the event "The tree is taller than 80 feet". This is the event $A=(80, \infty)$.

Operations on Events

Given two events A, B of a sample space Ω.

- Union: $A \cup B$
- Intersection: $A \cap B$
- Complement: \bar{A}
- Subtraction: $A-B$
"or" operation
"and" operation
"negation" operation
A happens, B does not

Event Spaces

Given a sample space Ω, the space of all possible events \mathcal{F} must satisfy several rules:

- $\emptyset \in \mathcal{F}$
- If $A_{1}, A_{2}, \ldots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.
- If $A \in \mathcal{F}$, then $\bar{A} \in \mathcal{F}$.

Definition

A set $\mathcal{F} \subseteq 2^{\Omega}$ that satisfies the above rules is called a σ-algebra.

Probability Measures

Definition

A measure on a σ-algebra \mathcal{F} is a function $\mu: \mathcal{F} \rightarrow[0, \infty)$ satisfying

- $\mu(\emptyset)=0$
- For pairwise disjoint sets $A_{1}, A_{2}, \ldots \in \mathcal{F}$,

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Definition

A measure P on (Ω, \mathcal{F}) is a probability measure if $P(\Omega)=1$.

Probability Spaces

Definition

A probability space is a triple (Ω, \mathcal{F}, P), where

1. Ω is a set, called the sample space,
2. \mathcal{F} is a σ-algebra, called the event space,
3. and P is a measure on (Ω, \mathcal{F}) with $P(\Omega)=1$, called the probability measure.

Some Properties of Probability Measures

For any probability measure P and events A, B :

$$
\begin{aligned}
& \text { - } P(\bar{A})=1-P(A) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Conditional Probability

Definition

Given a probability space (Ω, \mathcal{F}, P), the conditional probability of an event A given the event B is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Die Example:
Let $A=\{2\}$ and $B=\{2,4,6\} . P(A)=\frac{1}{6}$, but $P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 6}{1 / 2}=\frac{1}{3}$.

Independence

Definition

Let A and B be two events in a sample space. We say A and B are independent given that

$$
P(A \cap B)=P(A) P(B)
$$

Two events that are not independent are called dependent.

Independence

Consider two events A and B in a sample space. If the probability of A doesn't depend on B, then $P(A \mid B)=P(A)$.

Notice, $P(A)=P(A \mid B)=P(A \cap B) / P(B)$. Multiplying by $P(B)$ gives us

$$
P(A \cap B)=P(A) P(B)
$$

We get the same result if we start with $P(B \mid A)=P(B)$.

Independence

Theorem

Let A and B be two events in a probability space (Ω, \mathcal{F}, P). The following conditions are equivalent:

1. $P(A \mid B)=P(A)$
2. $P(B \mid A)=P(B)$
3. $P(A \cap B)=P(A) P(B)$

Random Variables

Definition

A random variable is a function defined on a probability space. In other words, if (Ω, \mathcal{F}, P) is a probability space, then a random variable is a function $X: \Omega \rightarrow V$ for some set V.

Note:

- A random variable is neither random nor a variable.
- We will deal with integer-valued $(V=\mathbb{Z})$ or real-valued ($V=\mathbb{R}$) random variables.
- Technically, random variables are measurable functions.

Dice Example

Let (Ω, \mathcal{F}, P) be the probability space for rolling a pair of dice, and let $X: \Omega \rightarrow \mathbb{Z}$ be the random variable that gives the sum of the numbers on the two dice. So,

$$
X[(1,2)]=3, \quad X[(4,4)]=8, \quad X[(6,5)]=11
$$

Even Simpler Example

Most of the time the random variable X will just be the identity function. For example, if the sample space is the real line, $\Omega=\mathbb{R}$, the identity function

$$
\begin{aligned}
& X: \mathbb{R} \rightarrow \mathbb{R}, \\
& X(s)=s
\end{aligned}
$$

is a random variable.

Defining Events via Random Variables

Setting a real-valued random variable to a value or range of values defines an event.

$$
\begin{aligned}
{[X=x] } & =\{s \in \Omega: X(s)=x\} \\
{[X<x] } & =\{s \in \Omega: X(s)<x\} \\
{[a<X<b] } & =\{s \in \Omega: a<X(s)<b\}
\end{aligned}
$$

Cumulative Distribution Functions

Definition

Let X be a real-valued random variable on the probability space (Ω, \mathcal{F}, P). Then the cumulative distribution function (cdf) of X is defined as

$$
F(x)=P(X \leq x)
$$

Properties of CDFs

Let X be a real-valued random variable with $\operatorname{cdf} F$. Then F has the following properties:

1. F is monotonic increasing.
2. F is right-continuous, that is,

$$
\lim _{\epsilon \rightarrow 0^{+}} F(x+\epsilon)=F(x), \quad \text { for all } x \in \mathbb{R} .
$$

3. $\lim _{x \rightarrow-\infty} F(x)=0$ and $\lim _{x \rightarrow \infty} F(x)=1$.

Probability Mass Functions (Discrete)

Definition

The probability mass function (pmf) for a discrete real-valued random variable X, denoted p, is defined as

$$
p(x)=P(X=x) .
$$

The cdf can be defined in terms of the pmf as

$$
F(x)=P(X \leq x)=\sum_{k \leq x} p(k)
$$

Probability Density Functions (Continuous)

Definition

The probability density function (pdf) for a continuous real-valued random variable X, denoted p, is defined as

$$
p(x)=\frac{d}{d x} F(x),
$$

when this derivative exists.
The cdf can be defined in terms of the pdf as

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} p(t) d t
$$

Example: Uniform Distribution

$X \sim \operatorname{Unif}(0,1)$

" X is uniformly distributed between 0 and 1."

$$
\begin{aligned}
& p(x)= \begin{cases}1 & 0 \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& F(x)= \begin{cases}0 & x<0 \\
x & 0 \leq x \leq 1 \\
1 & x>1\end{cases}
\end{aligned}
$$

Transforming a Random Variable

Consider a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ that transforms a random variable X into a random variable Y by $Y=f(X)$. Then the pdf of Y is given by

$$
p(y)=\left|\frac{d}{d y}\left(f^{-1}(y)\right)\right| p\left(f^{-1}(y)\right)
$$

Expectation

Definition

The expectation of a continuous random variable X is

$$
\mathrm{E}[X]=\int_{-\infty}^{\infty} x p(x) d x
$$

The expectation of a discrete random variable X is

$$
\mathrm{E}[X]=\sum_{i} x_{i} P\left(X=x_{i}\right)
$$

This is the "mean" value of X, also denoted $\mu_{X}=\mathrm{E}[X]$.

Linearity of Expectation

If X and Y are random variables, and $a, b \in \mathbb{R}$, then

$$
\mathrm{E}[a X+b Y]=a \mathrm{E}[X]+b \mathrm{E}[Y]
$$

This extends the several random variables X_{i} and constants a_{i} :

$$
E\left[\sum_{i=1}^{N} a_{i} X_{i}\right]=\sum_{i=1}^{N} a_{i} \mathrm{E}\left[X_{i}\right]
$$

Expectation of a Function of a RV

We can also take the expectation of any continuous function of a random variable. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and X a random variable, then

$$
\mathrm{E}[g(X)]=\int_{-\infty}^{\infty} g(x) p(x) d x
$$

Or, in the discrete case,

$$
\mathrm{E}[g(X)]=\sum_{i} g\left(x_{i}\right) P\left(X=x_{i}\right)
$$

Variance

Definition

The variance of a random variable X is defined as

$$
\operatorname{Var}(X)=\mathrm{E}\left[\left(X-\mu_{X}\right)^{2}\right]
$$

- This formula is equivalent to
$\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\mu_{X}^{2}$.
- The variance is a measure of the "spread" of the distribution.
- The standard deviation is the sqrt of variance:

$$
\sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

Example: Normal Distribution

$$
X \sim N(\mu, \sigma)
$$

" X is normally distributed with mean μ and standard deviation σ."

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

$$
\begin{aligned}
\mathrm{E}[X] & =\mu \\
\operatorname{Var}(X) & =\sigma^{2}
\end{aligned}
$$

Joint Distributions

Recall that given two events A, B, we can talk about the intersection of the two events $A \cap B$ and the probability $P(A \cap B)$ of both events happening.

Given two random variables, X, Y, we can also talk about the intersection of the events these variables define. The distribution defined this way is called the joint distribution:

$$
F(x, y)=P(X \leq x, Y \leq y)=P([X \leq x] \cap[Y \leq y]) .
$$

Joint Densities

Just like the univariate case, we take derivatives to get the joint pdf of X and Y :

$$
p(x, y)=\frac{\partial^{2}}{\partial x \partial y} F(x, y)
$$

And just like before, we can recover the cdf by integrating the pdf,

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} p(s, t) d s d t
$$

Marginal Distributions

Definition

Given a joint probability density $p(x, y)$, the marginal densities of X and Y are given by

$$
\begin{aligned}
& p(x)=\int_{-\infty}^{\infty} p(x, y) d y, \quad \text { and } \\
& p(y)=\int_{-\infty}^{\infty} p(x, y) d x
\end{aligned}
$$

The discrete case just replaces integrals with sums:

$$
p(x)=\sum_{j} p\left(x, y_{j}\right), \quad p(y)=\sum_{i} p\left(x_{i}, y\right)
$$

Cold Example: Probability Tables

Two Bernoulli random variables:
$C=$ cold $/$ no cold $=(1 / 0)$
$R=$ runny nose $/$ no runny nose $=(1 / 0)$
Joint pmf:

Cold Example: Marginals

Marginals:

$$
\begin{array}{ll}
P(R=0)=0.55, & P(R=1)=0.45 \\
P(C=0)=0.70, & P(C=1)=0.30
\end{array}
$$

Conditional Densities

Definition

If X, Y are random variables with joint density $p(x, y)$, then the conditional density of X given $Y=y$ is

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}
$$

Cold Example: Conditional Probabilities

Conditional Probabilities:

$$
\begin{aligned}
& P(C=0 \mid R=0)=\frac{0.50}{0.55} \approx 0.91 \\
& P(C=1 \mid R=1)=\frac{0.25}{0.45} \approx 0.56
\end{aligned}
$$

Independent Random Variables

Definition

Two random variables X, Y are called independent if

$$
p(x, y)=p(x) p(y)
$$

If we integrate (or sum) both sides, we see this is equivalent to

$$
F(x, y)=F(x) F(y)
$$

Conditional Expectation

Definition

Given two random variables X, Y, the conditional expectation of X given $Y=y$ is
Continuous case:

$$
\mathrm{E}[X \mid Y=y]=\int_{-\infty}^{\infty} x p(x \mid y) d x
$$

Discrete case:

$$
\mathrm{E}[X \mid Y=y]=\sum_{i} x_{i} P\left(X=x_{i} \mid Y=y\right)
$$

Expectation of the Product of Two RVs

We can take the expected value of the product of two random variables, X and Y :

$$
\mathrm{E}[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p(x, y) d x d y
$$

Covariance

Definition

The covariance of two random variables X and Y is

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =\mathrm{E}\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
& =\mathrm{E}[X Y]-\mu_{X} \mu_{Y}
\end{aligned}
$$

This is a measure of how much the variables X and Y "change together".

We'll also write $\sigma_{X Y}=\operatorname{Cov}(X, Y)$.

Correlation

Definition

The correlation of two random variables X and Y is

$$
\begin{aligned}
& \rho(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}, \text { or } \\
& \rho(X, Y)=E\left[\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)\left(\frac{Y-\mu_{Y}}{\sigma_{Y}}\right)\right] .
\end{aligned}
$$

Correlation normalizes the covariance between $[-1,1]$.

Independent RVs are Uncorrelated

If X and Y are two independent RVs, then

$$
\begin{aligned}
\mathrm{E}[X Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y p(x) p(y) d x d y \\
& =\int_{-\infty}^{\infty} x p(x) d x \int_{-\infty}^{\infty} y p(y) d y \\
& =\mathrm{E}[X] \mathrm{E}[Y]=\mu_{X} \mu_{Y}
\end{aligned}
$$

So, $\sigma_{X Y}=\mathrm{E}[X Y]-\mu_{X} \mu_{Y}=0$.

More on Independence and Correlation

Warning: Independence implies uncorrelation, but uncorrelated variables are not necessarily independent!

Independence \Rightarrow Uncorrelated
Uncorrelated \nRightarrow Independence

OR

Correlated \Rightarrow Dependent
Dependent \nRightarrow Correlated

