Markov-Chain Monte-Carlo Sampling

Spring 2022

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing
Outline

• General ideas and Markov chain basics
• Metropolis-Hastings algorithm
• Gibbs sampling
• Hybrid Monte-Carlo
Outline

• General ideas and Markov chain basics
 • Metropolis-Hastings algorithm
 • Gibbs sampling
 • Hybrid Monte-Carlo
MCMC: Goal

- Given a probabilistic model
 \[p(\mathcal{D}, \mathbf{z}) = p(\mathbf{z})p(\mathcal{D}|\mathbf{z}) \]

- How to generate samples from the posterior distribution
 (the samples are NOT necessarily independent!)

\[\mathbf{z}_1, \mathbf{z}_2, \ldots, \mathbf{z}_N \sim p(\mathbf{z}|\mathcal{D}) \]
MCMC: Goal

- Given the posterior samples, what can we do?
- A lot of things
 - Approximate the (marginal) posterior posterior over any subset of variable (unlike message-passing)
 \[
p(z|\mathcal{D}) \approx \frac{1}{N} \sum_{n=1}^{N} \delta(z - z_n)
\]
 - Estimation of any interested statistics/moments
 \[
 \mathbb{E}[f(z)] = \int f(z)p(z|\mathcal{D})dz \approx \frac{1}{N} \sum_{n=1}^{N} f(z_n)
 \]
 - Predictive distribution
 \[
p(y^*|\mathcal{D}) = \int p(y^*|z)p(z|\mathcal{D})dz \approx \frac{1}{N} \sum_{n=1}^{N} p(y^*|z_n)
\]
MCMC: Pros and Cons

• Pros
 – Asymptotic convergence to the true posterior (note: deterministic approximation, such as VI, always has discrepancy with the true posterior)
 – Robust to initialization
 – Empirically best and often used as a gold-standard to test other approximate inference algorithms
 – samples are more convenient to use than approximate distributions
MCMC: Pros and Cons

- Cons
 - Orders of magnitude slower than VB
 - Hard to diagnosis the convergence
 - Hard for parallelization (sequential sampling nature)
 - Hard for large-scale applications
 - Easily trap into single modes (this is the same as VB)

How to scale up MCMC to big data is a hot research topic!
MCMC: Basic ideas

Sample a sequence of variables using a Markov chain that converges to the desired posterior

$$z_1 \rightarrow z_2 \rightarrow \ldots \rightarrow z_n \rightarrow z_{n+1} \rightarrow \ldots$$

$$z_{n+1} \sim p(z_{n+1} | z_n) \quad \lim_{n \to \infty} p(z_n) = p(z | D)$$

Therefore, the MCMC samples are strongly correlated!
Basics of Markov chains

- A Markov chain is determined by
 - \(p(Z_1)\): we do not care it much in MCMC sampling

- Transition kernel: determines the speed of convergence

\[
T(z_n \rightarrow z_{n+1}) = p(z_{n+1} | z_n)
\]

if the kernel is the same for all \(n\), the Markov chain is called **homogeneous**

The development of MCMC sampling is the art to design the transition kernel
Basics of Markov chains

• What distribution does a MC converge to?
 – Invariant distribution

\[\int p^*(\mathbf{z}') T(\mathbf{z}' \rightarrow \mathbf{z}) d\mathbf{z}' = p^*(\mathbf{z}) \]

We claim that \(p^*(\cdot) \) is invariant to the transition kernel \(T \)

Also called stationary distribution

Obviously, we want to design a kernel to which the target posterior is invariant
Basics of Markov chains

• How to examine invariance?

Sufficient condition (not necessary): \textit{detailed balance}

\[p^*(z)T(z \rightarrow z') = p^*(z')T(z' \rightarrow z) \]
Basics of Markov chains

• How does *detailed balance* lead to *invariance*?

An MC whose stationary distribution and transition kernel respect detailed balance is called *reversible*.
Basics of Markov chains

• An MC can have multiple stationary distributions; converging to which one depends on $p(z_1)$
• We want our MC only converges to the desired posterior no matter what initial distribution is chosen!

• This property is called **ergodicity**: an ergodic MC only converges to one invariant (stationary) distribution
Basics of Markov chains

• Informally, in an ergodic chain, it is possible to go from every state to every state (not necessarily in one move)
• An ergodic chain is also called irreducible
• The invariant (or stationary) distribution of an ergodic chain is called the equilibrium distribution
Basics of Markov chains

• In MCMC sampling procedure
 – Invariance guarantees the samples will converge to the true posterior (unbiased)
 – Ergodicity guarantees the sample space can be fully explored (rather than partially)

• It can be shown that a homogeneous MC will be ergodic, subject only to weak restrictions on the invariant distribution and transitional kernels
Basics of Markov chains

• Conceptually, the sampling contains two stages
 – Before **burn-in**: the MC has yet converged to the invariant distribution. In practice, we usually set up the maximum # of steps before burn-in, and usually various tricks to verify convergence empirically (e.g., look at trace plots).
 – After **burn-in**: the MC has converged. Then we generate the posterior samples. To reduce the strong correlation, we often take every M-th sample (e.g., M = 5, 10, 20). We also need to compute the effective sample size (ESS) to ensure the collected samples are enough.
Outline

• General ideas and Markov chain basics
• **Metropolis-Hastings algorithm**
• Gibbs sampling
• Hybrid Monte-Carlo
Metropolis-Hastings algorithm

• A general framework for MCMC
Metropolis-Hastings algorithm

• A general framework for MCMC

• In each step, we first use a proposal distribution to generate a candidate sample, and then decide whether to accept this new sample
Metropolis-Hastings algorithm

- Denote the proposal distribution (not the transition kernel) by \(q(z' | z_n) \), e.g., \(\mathcal{N}(z' | z_n, \sigma^2 I) \). Sample the proposal \(z' \) first.

- Accept \(z' \) with probability

\[
\min(1, \frac{p(z', D)q(z_n | z')}{p(z_n, D)q(z' | z_n)})
\]
Metropolis-Hastings algorithm

- Accept z' with probability

$$\min(1, \frac{p(z', D)q(z_n|z')}{p(z_n, D)q(z'|z_n)})$$

How do we implement it in practice?

Sample a uniform R.V. u in $[0,1]$, and test if

$$u \leq \exp \left\{ \min \left(0, \log p(z', D) + \log q(z_n|z') - \log p(z_n, D) - \log q(z'|z_n) \right) \right\}$$
Metropolis-Hastings algorithm

• If we accept z'

\[
\text{Set } z_{n+1} = z'
\]

otherwise

\[
\text{Set } z_{n+1} = z_n
\]

Note: the chain may contain many duplicated samples due to rejections
Metropolis-Hastings algorithm

- Proof: MH guarantees the detailed balance

Given arbitrary \(z_n \) and \(z_{n+1} \), if \(z_{n+1} \neq z_n \), \(z_{n+1} \) must be obtained from accepting a proposal

\[
T(z_n \rightarrow z_{n+1}) = q(z_{n+1}|z_n) \min(1, \frac{p(z_{n+1}, D)q(z_n|z_{n+1})}{p(z_n, D)q(z_{n+1}|z_n)})
\]

\[
= q(z_{n+1}|z_n) \min(1, \frac{\frac{p(z_{n+1}, D)}{p(D)}q(z_n|z_{n+1})}{\frac{p(z_n, D)}{p(D)}q(z_{n+1}|z_n)})
\]

\[
= q(z_{n+1}|z_n) \min(1, \frac{p(z_{n+1}|D)q(z_n|z_{n+1})}{p(z_n|D)q(z_{n+1}|z_n)})
\]
Metropolis-Hastings algorithm

- Proof: MH guarantees the detailed balance

Given arbitrary z_n and z_{n+1}, if $z_{n+1} \neq z_n$, z_{n+1} must be obtained from accepting a proposal

$$T(z_n \rightarrow z_{n+1}) = q(z_{n+1} | z_n) \min(1, \frac{p(z_{n+1} | D)q(z_n | z_{n+1})}{p(z_n | D)q(z_{n+1} | z_n)})$$

$$p(z_n | D)T(z_n \rightarrow z_{n+1}) = p(z_n | D)q(z_{n+1} | z_n) \min(1, \frac{p(z_{n+1} | D)q(z_n | z_{n+1})}{p(z_n | D)q(z_{n+1} | z_n)})$$

$$= \min \left(p(z_n | D)q(z_{n+1} | z_n), p(z_{n+1} | D)q(z_n | z_{n+1}) \right)$$

$$p(z_{n+1} | D)T(z_{n+1} \rightarrow z_n)$$

$$= \min \left(p(z_{n+1} | D)q(z_n | z_{n+1}), p(z_n | D)q(z_{n+1} | z_n) \right)$$
Metropolis-Hastings algorithm

- Proof: MH guarantees the detailed balance

 if \(z_{n+1} = z_n \)

 \[
 T(z_n \rightarrow z_{n+1}) = p(\text{reject the proposal}) + p(\text{proposal is } z_{n+1} \text{ and accept})
 \]

 \[
 p(z_n|D)T(z_n \rightarrow z_{n+1}) = p(z_n|D) \cdot [p(\text{reject the proposal}) + p(\text{proposal is } z_{n+1} \text{ and accept})]
 \]

 \[
 p(z_{n+1}|D)T(z_{n+1} \rightarrow z_n) = p(z_n|D) \cdot [p(\text{reject the proposal}) + p(\text{proposal is } z_n \text{ and accept})]
 \]
Metropolis algorithm

• If we choose a symmetric proposal distribution

\[q(z' | z_n) = q(z_n | z') \quad \text{e.g.,} \quad \mathcal{N}(z' | z_n, \sigma^2 I) \]

Accept probability:

\[
\min(1, \frac{p(z', D)q(z_n | z')}{p(z_n, D)q(z' | z_n)})
\]

\[
= \min(1, \frac{p(z', D)}{p(z_n, D)})
\]

If the proposal increases the model probability, the accept rate is one!
Nightmare: random walk behavior

• We need to collect samples that fit the target posterior (e.g., their histogram should be more and more like the posterior). That means, we require many samples on the high-density regions and much less samples on the low-density regions.

• However, if the proposals are generated like a random walk through the sample space, a great many proposals will be discarded (due to being in the low-density regions); and much computational cost is wasted.
Nightmare: random walk behavior

- Take the commonly used Gaussian proposal as an example

- So a key goal to design MCMC algorithms is to reduce random walk behavior!
Outline

• General ideas and Markov chain basics
• Metropolis-Hastings algorithm
• Gibbs sampling
• Hybrid Monte-Carlo
Gibbs sampling

• A special type of MH algorithm
• Use conditional distribution to sample each single (or subset of) random variable in the model
• Accept rate is always one
• A good choice when the conditional distribution is tractable and easy to draw samples
Gibbs sampling

\[\mathbf{z} = [z_1, \ldots, z_m]^\top \quad p(\mathbf{z}, \mathcal{D}) = p(z_1, \ldots, z_m, \mathcal{D}) \]

Assume each \(p(z_i | \mathbf{z}_{-i}, \mathcal{D}) \) is tractable and easy to generate samples

\[\mathbf{z}_{-i} = [z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_m]^\top \]
Gibbs sampling

- Initialize $z^{(1)} = [z_1^{(1)}, \ldots, z_m^{(1)}]^\top$

- For $t = 1, \ldots, T$
 - Sample $z_1^{(n+1)} \sim p(z_1 | z_2^{(n)}, z_3^{(n)}, \ldots, z_m^{(n)}, D)$
 - Sample $z_2^{(n+1)} \sim p(z_2 | z_1^{(n+1)}, z_3^{(n)}, \ldots, z_m^{(n)}, D)$
 - Sample $z_3^{(n+1)} \sim p(z_3 | z_1^{(n+1)}, z_2^{(n+1)}, \ldots, z_m^{(n)}, D)$
 - Sample $z_j^{(n+1)} \sim p(z_j | z_1^{(n+1)}, \ldots, z_{j-1}^{(n+1)}, z_{j+1}^{(n)}, \ldots, z_m^{(n)}, D)$
 ...
 - Sample $z_m^{(n+1)} \sim p(z_m | z_1^{(n+1)}, z_2^{(n+1)}, \ldots, z_{m-1}^{(n+1)}, D)$
Gibbs sampling

- We can also partition the random variables into sub-vectors, and perform similar alternative sampling

\[z = [z_1, \ldots, z_t]^\top \]

\[p(z_i|z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_t, D) \]

- This is called block Gibbs sampling
Gibbs sampling: examples

- Matrix factorization

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>3.2</td>
<td>1.2</td>
<td>5</td>
<td>4.0</td>
</tr>
<tr>
<td>User 2</td>
<td>2.2</td>
<td>1.0</td>
<td>?</td>
<td>3.0</td>
</tr>
<tr>
<td>User 3</td>
<td>2.5</td>
<td>?</td>
<td>4.3</td>
<td>?</td>
</tr>
</tbody>
</table>
Gibbs sampling: examples

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>3.2</td>
<td>1.2</td>
<td>5</td>
<td>4.0</td>
</tr>
<tr>
<td>User 2</td>
<td>2.2</td>
<td>1.0</td>
<td>?</td>
<td>3.0</td>
</tr>
<tr>
<td>User 3</td>
<td>2.5</td>
<td>?</td>
<td>4.3</td>
<td>?</td>
</tr>
</tbody>
</table>

For each user i, introduce a k-dimensional latent feature vector \mathbf{u}_i.

For each movie j, introduce a k-dimensional latent feature vector \mathbf{v}_j.

$$ p(\mathbf{u}_i) = \mathcal{N}(\mathbf{u}_i | \mathbf{0}, \mathbf{I}) \quad p(\mathbf{v}_j) = \mathcal{N}(\mathbf{v}_j | \mathbf{0}, \mathbf{I}) $$

The rating is sampled from a Gaussian

$$ p(R_{ij} | \mathbf{U}, \mathbf{V}) = \mathcal{N}(R_{ij} | \mathbf{u}_i^\top \mathbf{v}_j, \tau) $$
Gibbs sampling: examples

<table>
<thead>
<tr>
<th></th>
<th>Movie 1</th>
<th>Movie 2</th>
<th>Movie 3</th>
<th>Movie 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>User 1</td>
<td>3.2</td>
<td>1.2</td>
<td>5</td>
<td>4.0</td>
</tr>
<tr>
<td>User 2</td>
<td>2.2</td>
<td>1.0</td>
<td>?</td>
<td>3.0</td>
</tr>
<tr>
<td>User 3</td>
<td>2.5</td>
<td>?</td>
<td>4.3</td>
<td>?</td>
</tr>
</tbody>
</table>

The joint probability

\[
p(U, V, R) = \prod_{i} p(u_i) \prod_{j} p(v_j) \prod_{(i,j) \in \mathcal{O}} p(r_{ij} | u_i^T v_j, \tau)\]
Gibbs sampling: examples

\[p(U, V, R) = \prod_{i} p(u_i) \prod_{j} p(v_j) \prod_{(i,j) \in O} p(r_{ij} | u_i^T v_j, \tau) \]

We can use Gibbs sampling to sequentially sample each \(u_i \) and \(v_j \)

The conditional distribution will be Gaussian!
Gibbs sampling: correctness

- Proof: the target posterior is invariant to the chain

What is the transition kernel?

\[T(\mathbf{z}^{(n)} \rightarrow \mathbf{z}^{(n+1)}) = p(z_1^{(n+1)} | z_2^{(n)}, \ldots, z_m^{(n)}, \mathcal{D}) \]
\[\cdot p(z_2^{(n+1)} | z_1^{(n+1)}, z_3^{(n)}, \ldots, z_m^{(n)}, \mathcal{D}) \]
\[\ldots \]
\[\cdot p(z_m^{(n+1)} | z_1^{(n+1)}, z_2^{(n+1)}, \ldots, z_{m-1}^{(n+1)}, \mathcal{D}) \]
\[\text{m steps} \]
Gibbs sampling: correctness

- Proof: the target posterior is invariant to the chain

\[
T(z^{(n)} \rightarrow z^{(n+1)}) = p(z_1^{(n+1)} | z_2^{(n)}, \ldots, z_m^{(n)}, \mathcal{D}) \\
p(z_2^{(n+1)} | z_1^{(n+1)}, z_3^{(n)}, \ldots, z_m^{(n)}, \mathcal{D}) \\
\cdots \\
p(z_m^{(n+1)} | z_1^{(n+1)}, z_2^{(n+1)}, \ldots, z_{m-1}^{(n+1)}, \mathcal{D})
\]

if \(z^{(n)} \sim p(z | \mathcal{D}) \) respect the target posterior
Gibbs sampling: correctness

• Note that you need also to ensure ergodicity
• A sufficient condition is that none of the conditional distributions be zero anywhere in the sample space (not hard for continuous distributions)
• If the sufficient condition is NOT satisfied, you must explicitly prove the ergodicity!
Gibbs sampling: An instance of MH

• One iteration of Gibbs sampling is equivalent to m steps of MH updates, each step with accept prob. 1

• Let us look at one step, w.l.o.g., sample the first element (the other elements are the same)
Gibbs sampling: An instance of MH

- Let us look at one step, w.l.o.g., sampling the first element (sampling the other elements are the same)

\[z_n = [z_1^{(n)}, z_2^{(n)}, \ldots, z_m^{(n)}]^{\top} \quad \rightarrow \quad z' = [z_1^{(n+1)}, z_2^{(n)}, \ldots, z_m^{(n)}]^{\top} \]

Acceptance probability

\[
\min \left(1, \frac{p(z_1^{(n+1)}, z_2^{(n)}, \ldots, z_m^{(n)}, D)p(z_1^{(n)} | z_2^{(n)}, \ldots, z_m^{(n)}, D)}{p(z_1^{(n)}, z_2^{(n)}, \ldots, z_m^{(n)}, D)p(z_1^{(n+1)} | z_2^{(n)}, \ldots, z_m^{(n)}, D)} \right)
\]

\[
\min \left(1, \frac{p(z_1^{(n+1)} | z_2^{(n)}, \ldots, z_m^{(n)}, D)p(z_1^{(n)} | z_2^{(n)}, \ldots, z_m^{(n)}, D)}{p(z_1^{(n)} | z_2^{(n)}, \ldots, z_m^{(n)}, D)p(z_1^{(n+1)} | z_2^{(n)}, \ldots, z_m^{(n)}, D)} \right) = 1
\]
Gibbs sampling: inefficient exploration

• Although Gibbs sampling won’t reject samples, it may still suffer from inefficient exploration due to strong correlations.
Outline

• General ideas and Markov chain basics
• Metropolis-Hastings algorithm
• Gibbs sampling
• Hybrid Monte-Carlo
The MCMC algorithms we learned so far

- Random walk behavior --- waste a lot of samples
- High correlation between different RVs --- slow exploration
- Can we address both problems?
Hybrid Monte-Carlo Sampling (HMC)

• Also called Hamiltonian MC
• An augmented approach
• Turn the probability to the energy of a physical system
• Augment with other physical properties
• Use the evolution of the physical system (usually described by a set of partial/ordinary differential equations)
• Theoretically can explore the sample space more efficiently, acceptance prob = 1
• Practically limited by the numerical integration error.
Hamiltonian system

- Consider a small ball in a m-dimensional space, without any friction
- Given an initial position and momentum, how does the ball move?
Hamiltonian system

• Characterize how the system evolves
• $\mathbf{z}(t)$: position vector at time t
• Potential energy: $U(\mathbf{z}(t))$
• $\mathbf{r}(t)$: momentum vector at time t
• Kinetic energy: $K(\mathbf{r}(t))$
• Total energy: $H(\mathbf{z}, \mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})$
Hamiltonian system

- $\mathbf{z}(t)$: position vector at time t
- Potential energy: $U(\mathbf{z}(t))$
- $\mathbf{r}(t)$: momentum vector at time t
- Kinetic energy: $K(\mathbf{r}(t))$
- Total energy: $H(\mathbf{z}, \mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})$

Evolving:

$$\begin{align*}
\frac{d\mathbf{z}_i}{dt} &= \frac{\partial H}{\partial r_i} \\
\frac{d\mathbf{r}_i}{dt} &= -\frac{\partial H}{\partial z_i}
\end{align*}$$

$$\mathbf{z} = [z_1, \ldots, z_m]^\top$$

$$\mathbf{r} = [r_1, \ldots, r_m]^\top$$
Hamiltonian system

• How to map our probabilistic model into the system?

\[p(z, D) = p(z_1, \ldots, z_m, D) \]

• We take

\[U(z) = -\log(p(z, D)) \]

\[K(r) = \frac{1}{2} r^\top M^{-1} r \quad \text{often takes identity/diagonal matrix} \]

\[H(z, r) = U(z) + K(r) \quad \text{energy dist.} \quad p(z, r) \propto \exp\left(- H(z, r) \right) \]

What does it include?
Hamiltonian system

\[U(z) = -\log(p(z, D)) \]
\[K(r) = \frac{1}{2} r^\top M^{-1} r \]

\[H(z, r) = U(z) + K(r) \]

\[
\begin{align*}
\frac{dz_i}{dt} &= \frac{\partial H}{\partial r_i} \\
\frac{dr_i}{dt} &= -\frac{\partial H}{\partial z_i}
\end{align*}
\]

\[
\begin{align*}
\frac{dz_i}{dt} &= [M^{-1} r]_i \\
\frac{dr_i}{dt} &= -\frac{\partial U}{\partial z_i}
\end{align*}
\]
Hamiltonian System

- The key idea: use the current sample z_n and random sample of r, as the initial state of the Hamiltonian system; and then evolve the system to a time t, pick the $z(t)$ as the proposal and test whether to accept it as z_{n+1}

Note: the proposal is not randomly generated; it is generated deterministically.
Hamiltonian system

• Nice properties to guarantee the detailed balance

1. Reversibility:

\[
p^*(z)T(z \rightarrow z') = p^*(z')T(z' \rightarrow z)
\]

Why is it important?

Now T is a delta function, we need to be able to jump back!
Numerical Integration

• Nice properties to guarantee the detailed balance

2. Conservation: \(\frac{dH}{dt} = 0 \) Totally energy does not change

3. Volume preservation: Determinant of Jacobian is always 1

For any \(t,s \geq 0 \):
\[
|\det \frac{\partial [u(t + s), r(t + s)]^T}{\partial [u(t), r(t)]^T}| = 1
\]

Volume does not change after transformation
General theorem (proof omitted)

Consider an arbitrary dynamic system Ψ_t

Let $v=(z,r)$ be the extended variable. Define $v' = \Psi_t(v)$

If the following conditions are satisfied:

- Ψ_t is reversible under R, i.e., $v = \Psi_t^{-1}(v') = R(\Psi_t(R(v')))$
- R is an involution, i.e., $R \circ R(x) = x$
- The proposed sample $R(v')$ is accepted with prob.

$$\min\{1, \frac{p(R(v'))}{p(v)} | \det \frac{\partial R \circ \Psi_t(v)}{\partial v} | \} \quad \text{otherwise keep } v$$

Then $p(v)$ is stationary distribution of the Markov chain generated by this Ψ_t and accept test
General theorem (proof omitted)

Consider an arbitrary dynamic system Ψ_t

Let $\mathbf{v} = (z, r)$ be the extended variable. Define $\mathbf{v}' = \Psi_t(\mathbf{v})$

If the following conditions are satisfied:

- Ψ_t is reversible under R, i.e., $\mathbf{v} = \Psi_t^{-1}(\mathbf{v}') = R(\Psi_t(R(\mathbf{v}'))) \quad (R$ is negating the momentum)
- R is an involution, i.e., $R \circ R(\mathbf{x}) = \mathbf{x}$
- The proposed sample $R(\mathbf{v}')$ is accepted with prob.

$$\min\{1, \frac{p(R(\mathbf{v}'))}{p(\mathbf{v})} | \det \frac{\partial R \circ \Psi_t(\mathbf{v})}{\partial \mathbf{v}} | \} \quad \text{otherwise keep } \mathbf{v} \quad \text{volume preservation}$$

Then $p(\mathbf{v})$ is stationary distribution of the Markov chain generated by this Ψ_t and accept test

Apply the theorem to Hamiltonian system, the accept rate is always 1
However, we cannot exactly evolve Hamiltonian system (do not know solution)

\[
\begin{align*}
U(\mathbf{z}) &= -\log(p(\mathbf{z}, \mathcal{D})) \\
K(\mathbf{r}) &= \frac{1}{2} \mathbf{r}^\top \mathbf{M}^{-1} \mathbf{r}
\end{align*}
\]

\[
H(\mathbf{z}, \mathbf{r}) = U(\mathbf{z}) + K(\mathbf{r})
\]

\[
\begin{align*}
\frac{d\mathbf{z}_i}{dt} &= \frac{\partial H}{\partial r_i} \\
\frac{d\mathbf{r}_i}{dt} &= -\frac{\partial H}{\partial z_i} \\
\frac{d\mathbf{r}_i}{dt} &= \left[\mathbf{M}^{-1}\mathbf{r}\right]_i \\
\frac{d\mathbf{z}_i}{dt} &= -\frac{\partial U}{\partial z_i}
\end{align*}
\]
Numerical integration

\[
\frac{dz_i}{dt} = [M^{-1} r]_i \\
\frac{dr_i}{dt} = - \frac{\partial U}{\partial z_i}
\]

In practice we often choose \(M = \text{diag}[s_1, \ldots, s_m] \)

Euler’s method: choose step size \(\epsilon \), and # of step size \(L \)

\[
r_i(t + \epsilon) = r_i(t) + \epsilon \frac{dr_i(t)}{dt} = r_i(t) - \epsilon \frac{\partial U(z(t))}{\partial z_i}
\]

\[
z_i(t + \epsilon) = z_i(t) + \epsilon \frac{dz_i(t)}{dt} = z_i(t) + \epsilon \frac{r_i(t)}{s_i}
\]

Log joint probability
Leapfrog method

- Euler’s method is a first-order method $O(\epsilon)$
- In practice, people choose Leapfrog method, a second-order method $O(\epsilon^2)$

\[
\begin{align*}
 r_i(t + \epsilon/2) &= r_i(t) - (\epsilon/2) \frac{\partial U(z)}{\partial z_i} \\
 z_i(t + \epsilon) &= z_i(t) + \epsilon \frac{r_i(t + \epsilon/2)}{s_i} \\
 r_i(t + \epsilon) &= r_i(t + \epsilon/2) - (\epsilon/2) \frac{\partial U(z(t + \epsilon))}{\partial z_i}
\end{align*}
\]

introduce half-step
Leapfrog method \((\epsilon, L)\)

- Key properties
 - Reversibility under momentum negation
 - Volume preservation: each leap-frog step is a shear transformation and preserves volumes

Question: does conservation still hold?
Leapfrog method \((\varepsilon, L)\)

- Key properties
 - Reversibility under momentum negation

\[
\begin{align*}
(z(t), r(t)) & \quad (z(t+s), r(t+s)) \\
(z(t), -r(t)) & \quad (z(t+s), -r(t+s))
\end{align*}
\]

- Volume preservation: each leap-frog step is a shear transformation and preserves volumes

Question: does conservation still hold?
No, because it is a numerical approximation!
General theorem (proof omitted)

Consider an arbitrary dynamic system Ψ_t

Let $\mathbf{v} = (\mathbf{z}, \mathbf{r})$ be the extended variable. Define $\mathbf{v}' = \Psi_t(\mathbf{v})$

If the following conditions are satisfied:

- Ψ_t is reversible under R, i.e., $\mathbf{v} = \Psi_t^{-1}(\mathbf{v}') = R(\Psi_t(R(\mathbf{v}')))$
- R is an involution, i.e., $R \circ R(\mathbf{x}) = \mathbf{x}$ \hspace{1cm} R: momentum negation
- The proposed sample $R(\mathbf{v}')$ is accepted with prob.

$$\min\{1, \frac{p(R(\mathbf{v}'))}{p(\mathbf{v})} \left| \text{det} \frac{\partial R \circ \Psi_t(\mathbf{v})}{\partial \mathbf{v}} \right| \}$$

otherwise keep \mathbf{v}

Then $p(\mathbf{v})$ is stationary distribution of the Markov chain generated by this Ψ_t and accept test

Note that: due to the numerical error, the accept rate is not guaranteed to be 1
HMC based on leap-frog

- We augment the latent variable \(z \), with momentum variables \(r \)
- Construct energy distribution

\[
U(z) = -\log (p(z, D)) \quad \quad K(r) = \frac{1}{2} r^\top M^{-1} r
\]

\[
H(z, r) = U(z) + K(r)
\]

\[
p(z, r) \propto \exp \left(- H(z, r) \right)
\]

- We construct a MC to generate samples from \(p(z, r) \)
HMC based on leap-frog

• Step 1: generate new sample for r
 $$r_i \sim \mathcal{N}(r_i | 0, s_i)$$

 (This is a Gibbs sampling step, why? Because the r and z are independent!)

• Step 2: start with current (z, r) and run Leap-frog for L steps with step size ϵ, obtain (z', r'), set $r' = -r'$, accept z' with probability

 $$\min\{1, \exp \left(-H(z', r') + H(z, r) \right) \} = \min\{1, \exp \left(-U(z') - K(r') + U(z) + K(r) \right) \}$$

 otherwise keep z

 (This is a Metropolis-hasting step)

• Repeat Step 1 & 2 until get all the samples after burn-in
HMC-correctness

• Combining multiple Metropolis-hasting steps still yields one valid MH step, so the target posterior is invariant to the transitional kernel of the chain

• Ergodicity: typically satisfied because any value can be sampled from the momentum; only failed when the Leapfrog will produce periodicity; we can overcome this issue by randomly choosing ϵ and L routinely.
HMC applications

• Apply to continuous distributions only, because Leapfrog needs the gradient information
• Very powerful MCMC algorithms.
• Usually much better than original Metropolis Hasting
• Gold-standard for inference in Bayesian neural networks.
HMC discussion

• There is a trade-off for the choice \((\epsilon, L)\) in the Leapfrog
 \[
 \min\{1, \exp(-H(z', r') + H(z, r))\}
 \]
• Large \(\epsilon\) and \(L\) will allow you to explore the space further away, but increase the numerical error and lower the acceptance rate
• Small \(\epsilon\) and \(L\) will be more accurate and so the acceptance rate increases, but the generated samples are not distant.
• In practice, it is very important to tune the two parameters!
What you need know

• Basic idea of MCMC
• Key concepts: transitional kernel, stationary/invariant/equilibrium distribution, detailed balance...
• Metropolis Hasting and random walk behavior
• Gibbs sampling
• Hybrid Monte-Carlo sampling
• You should be able to implement these algorithms!