Laplace approximation

Spring 2024

Instructor: Shandian Zhe
zhe@cs.utah.edu
School of Computing

THE

UNIVERSITY
OF UTAH

Outline

- Laplace approximation
- Bayesian logistic regression

Outline

- Laplace approximation
- Bayesian logistic regression

Laplace approximation

- Objective: construct a Gaussian distribution to approximate the posterior distribution
- Method: second order Taylor expansion at the posterior mode (i.e., MAP estimation)

Laplace approximation

- Given a joint probability $p(\boldsymbol{\theta}, \mathcal{D})$
- How to compute (approximate) $p(\boldsymbol{\theta} \mid \mathcal{D})$?

Let us do MAP estimation first

$$
\boldsymbol{\theta}_{0}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p(\boldsymbol{\theta}, \mathcal{D})=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \log p(\mathcal{D} \mid \boldsymbol{\theta})
$$

Laplace approximation

- We then expand the log joint probability at the posterior mode

$$
\begin{array}{ll}
\quad f(\boldsymbol{\theta}) \triangleq \log p(\boldsymbol{\theta}, \mathcal{D}) \\
\left.f(\boldsymbol{\theta}) \approx f\left(\boldsymbol{\theta}_{0}\right)+\nabla f\left(\boldsymbol{\theta}_{0}\right)\right)^{\top}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) & \nabla f\left(\boldsymbol{\theta}_{0}\right)=\mathbf{0} \\
+\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \nabla \nabla f\left(\boldsymbol{\theta}_{0}\right)\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) & \nabla \nabla f\left(\boldsymbol{\theta}_{0}\right) \prec 0 \text { Why? } \\
=f\left(\boldsymbol{\theta}_{0}\right)-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \mathbf{A}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)
\end{array}
$$

$$
\mathbf{A}=-\nabla \nabla f\left(\boldsymbol{\theta}_{0}\right) \succ 0
$$

Laplace approximation

$$
\begin{gathered}
f(\boldsymbol{\theta}) \triangleq \log p(\boldsymbol{\theta}, \mathcal{D}) \\
\approx f\left(\boldsymbol{\theta}_{0}\right)-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \mathbf{A}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) \\
p(\boldsymbol{\theta}, \mathcal{D}) \approx p\left(\boldsymbol{\theta}_{0}, \mathcal{D}\right) \exp \left(-\frac{1}{2}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)^{\top} \mathbf{A}\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right) \\
\text { Gaussian! } \\
p(\boldsymbol{\theta} \mid \mathcal{D}) \approx \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{0}, \mathbf{A}^{-1}\right) \quad \begin{array}{l}
\boldsymbol{\theta}_{0}=\underset{\boldsymbol{\theta}}{\operatorname{argmax} \log p(\boldsymbol{\theta}, \mathcal{D})} \\
\mathbf{A}=-\left.\nabla \nabla \log p(\boldsymbol{\theta}, \mathcal{D})\right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{0}}
\end{array}
\end{gathered}
$$

Laplace approximation

$$
p(z) \propto \exp \left(-z^{2} / 2\right) \sigma(20 z+4)
$$

Yellow: true
Red: Laplace approx.

Outline

- Laplace approximation
- Bayesian logistic regression

Bayesian Logistic regression

- Given a dataset $\left\{\phi_{n}, t_{n}\right\}$, where $t_{n} \in\{0,1\}, \phi_{n}=\phi\left(\mathbf{x}_{n}\right)$ and $n=1, \ldots, N$, the likelihood function is given by

$$
\begin{aligned}
& p(\mathbf{w})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{0}, \mathbf{S}_{0}\right) \\
& p(\mathbf{t} \mid \mathbf{w})=\prod_{n=1}^{N} y_{n}^{t_{n}}\left\{1-y_{n}\right\}^{1-t_{n}} \\
& \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right)^{\mathrm{T}} \\
& y_{n}=p\left(\mathcal{C}_{1} \mid \boldsymbol{\phi}_{n}\right)=\sigma\left(\mathbf{w}^{\top} \boldsymbol{\phi}_{n}\right) \\
& p(\mathbf{w} \mid \mathbf{t}) \propto p(\mathbf{w}) p(\mathbf{t} \mid \mathbf{w})
\end{aligned}
$$

Bayesian logistic regression

$$
\begin{aligned}
& \log p(\mathbf{w}, \mathbf{t})=-\frac{1}{2}\left(\mathbf{w}-\mathbf{m}_{0}\right)^{\mathrm{T}} \mathbf{S}_{0}^{-1}\left(\mathbf{w}-\mathbf{m}_{0}\right) \\
&+\sum_{n=1}^{N}\left\{t_{n} \ln y_{n}+\left(1-t_{n}\right) \ln \left(1-y_{n}\right)\right\}+\mathrm{const} \\
& \frac{d \sigma}{d a}=\sigma(1-\sigma) . \\
& \mathbf{S}_{N}=-\nabla \nabla \ln p(\mathbf{w} \mid \mathbf{t})=\mathbf{S}_{0}^{-1}+\sum_{n=1}^{N} y_{n}\left(1-y_{n}\right) \boldsymbol{\phi}_{n} \boldsymbol{\phi}_{n}^{\mathrm{T}} \\
& q(\mathbf{w})= \mathcal{N}\left(\mathbf{w} \mid \mathbf{w}_{\mathrm{MAP}}, \mathbf{S}_{N}^{-1}\right)
\end{aligned}
$$

Bayesian logistic regression

- Predictive distribution: given a new input ϕ

What you need to know

- The general idea of Laplace's Approximation
- Being able to implement it

