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Abstract

Texture is a property of a region. Thus, it is nec~-
essary to specify an optimal region over which textur-
al properties are to be measured. Small regions will
lead to higher spatial resolution in determining boun-
daries. Measurement regions which are too small,
however, lead to inaccurate detection of textural
differences. The limits of human textural resolutions
are investigated. Statistical characterizations of
image regions are found which correlate well with the
perceptual ability to detect distinct textures over
small areas.

I. Introduction

Textural properties of imagery must be sampled over
a region. This concept is particularly important in
any system which analyzes spatial variations in text-
ural characteristics. The need to specify the range
of region sizes for textural measurements arises both
in procedures for detecting textural edges or grad-
ients and in region merger systems utilizing textural
information.

Several authors have recognized a similar problem
for simple gray scale edges. Derivative operators de~
pendent only on adjacent picture points display an ex—
treme noise sensitivity. Furthermore, a boundary
might separate two areas of significantly differing
average brightness and yet the intensity transition
across the edge may be relatively gradual. One suc-
cessful edge operator, developed by Hueckel, locates
the "best' edge over a relatively large, fixed size
region in the image.l Another approach is to inter-
pret an edge as two adjacent regions differing signi-
ficantly in average brightness. Rosenfeld and Thurs-
ton use this formulation to develop an operator which
evaluates average brightness over a number of region
sizes.2 A decision procedure is then applied at each
point to determine which (if any) region size best
measures a possible "conspicuous edge" running through
that point.

Textural boundaries may be located by finding adja-
cent image regions differin% significantly in per-
ceived textural properties. Here too, it 1s necessary
to determine the regions over which measurements are
to be calculated. The computation of textural fea-
tures is a complex task. It would therefore be advan-
tageous to limit the range of region sizes as much as
possible.

An additional problem arises for very small region
sizes., The digital measurement of texture is essen-—
tially a statistical process. For small regions, the
digital estimate of the textures present is apt to be
highly imprecise. Thus, if the region size is too
small, the estimate of textural edges will be quite
inaccurate. As a result, we need a lower bound on the
region size over which to compute textural measure-
ments.

II. Background

Minimal region sizes for texture analysis have usual-
1y been selected somewhat arbitrarily. This is often
done by trial on the domain of imagery on which a giv-
en system is expected to perform. For example, Bajcsy
uses a variety of region sizes, the smallest of which
is a square region 8 sample points on a side.% The
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penalty of choosing a minimal size which is too large
is a lack of resolution. Visually distinct detail may
not be recognized by the system. The problems of
choosing a size which is too small are more severe.

As with brightness edge approaches, if the size of the
area over which textural statistics are sampled 1s in-
sufficient to accurately characterize the texture,
then the accuracy of any processing dependent on those
measurements will be severely limited.

A number of approaches are possible for investigating
this problem. One possibility is to look at the effect
of region size on pattern classification procedures.
Another technique is to search for statistical charac-
terizations of texture which correlate well with mini-
mal size for detectabilitry. Alternately, it is possi-~
ble to determine the textural resolution of the human
visual system for a given domain of textures. This is
of particular value for systems searching for visually
distinct textural boundaries.

Ausherman studies the problem of determining minimum
region sizes from a classification view point.
Images are divided into disjoint fixed size regiouns
and textural measurements made on each region. Based
on these measurements, a region is assigned to one of
a fixed set of classes. A major problem is to balance
the finer resolution inherent in smaller region sizes
against the resulting degradation of classification
accuracy. Several experimental plots of the effects
of varying region sizes on classification results are
presented. Thus, if a particular classification accuir-
acy is desired, a particular region size may be speci~-
fied.

Several other statistically motivated approaches are
possible. If we view texture as described by a repli-
cated basic pattern,6 then as that base pattern is
made larger, it is reasonable to assume that larger
regions must be employed for correct evaluation of the
texture, (It would presumably be necessary that the
region be large enough to both estimate the nature of
the basic pattern and the characteristics of the re-
placement rule.) Thus, for proper identification,
coarser patterns should be measured over larger regions
than are necessary for .finer textures. A number of
authors have suggested that the auto-correlation func-
tion of an image region is a good indicator of the
coarseness of the texture in the region.7 Specifically,
the sharper the drop off in the auto-correlation func-
tion from its maximum, the finer the texture. It might
therefore be possible to analytically estimate the re-
gion size required for correct analysis of a given
texture pattern.

One interpretation of an auto-correlation function is
that an image region 1s compared to a shifted version
of itself. If the structures in the region are large,
small shifts will produce little difference in the
comparison. If the basiec structures are smaller, how-
ever, only a small shifting is needed to produce a
great difference in the point by point comparison. It
will be convenient to define an auto-correlation func-
tion c(a,d) with the shifting specified in terms of
angle and displacement rather than distance in x and y.
Furthermore, a measure c(d) without angular dependence
may be computed by averaging c(a,d) over several angles
for a fixed displacement. Displacement is specified
in terms of the spacing between sample points. In the
experiments to be described, auto-correlations were not
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normalized. Thus in general, c(0) # 1.

To demonstrate the relationship between auto-
correlation drop~offs and the intuitive notion of tex—
tural coarseness, a sequence of texture patterns was
ordered based on auto-correlation ratios of the form
x(1)/c(m), L <m., Most of the ratio measures agree
with perceived rankings of coarseness. Figure 1
shows a set of patterns ranked by c(0)/c(1l). (This
measure is in effect a normalized auto-correlation
for a one pixel shift.) Clearly, the coarseness of
the patterns increases from left to right.

ITI. Perceived Textural Resolution

Accurate simulation of human perception represents
a desirable (and ambitious) goal for many scene seg-
mentation systems. To effectively analyze ''perceived
boundaries', an understanding is needed of the powers
and limitations of human visual processing. This un-
derstanding may suggest the performance to be expect-
ed from automated simulations. In order to gain
information about the perception of textural effects,
a procedure was developed for experimentally deter-—
mining the smallest region over which a textural pat-
tern can be resolved by a human observer. The proce-
dure was formulated such that both the effects of the
nature of the central texture and the effects of sur-
rounding image regions could be investigated.

A simple set of experiments was created to investi~-
gate the smallest region over which a distinct text-
ural pattern could be recognized. First, "eye chart"
templateg were created (see figure 2). The charac-
ters in the charts were distinguished by having either
a vertical or a horizontal orientation. Each row of
the charts contained characters smaller than the row
above. The charts were represented as a digital im-
age array of 256 by 256 elements. Character height
ranged in five steps from 48 to 8 pixels. The indi-
vidual strips in the characters ranged from 12 to 2
pixels in width.

These charts were used as templates for creating a
series of textural resolution tests. Two digital
images representative of different, naturally occur-
ring textures were merged according to the pattern of
a particular chart. The output image was identical
to the first textural image in those areas corres—
ponding to background on the chart. In those areas
corresponding to the characters, the second textural
pattern was inserted.

A series of such textural charts were created cor-
responding to different pairs of natural textures.
For the current experiment, only intensity normalized
samples were used as it was desired to measure purely
textural effects. The normalized patterns all had
the same distribution of intensity levels and thus no
differences existed in either contrast or average
brightness. The technique used was a histogram map-—
ping procedure with a clipped Gaussian target dis-
tribution. (Quantization errors in the normalization
procedure resulted in a slight variation in c(0) be-
tween samples.) For each pair, two charts were cre-
ated. A given texture would be used first as back-
ground, and then as characters. A sample chart is
given in figure 3.

Subjects were placed at a specified distance from
a digital image display. Each was given a fixed time
to correctly identify the characters on a given line.
Successive lines were read until an error occurred.
Efforts were made to hold constant pattern illumina-
tion and ambient lighting. The same presentation se-
quence was used for all subjects. The testing proce-
dure proved to be quite tiring. As a result, testing
sessions for a given subject were limited and approp-
riately spaced to minimize visual fatigue.

284

IV. Results

A prime intent of the textural resolution experi-
ments was to find if any of the standard characteriza-
tion of texture in digital imagery correlated well
with actual observer performance. A large number of
resolution experiments were conducted. Each experi-
ment was defined by a foreground and a background tex-~
tural pattern. Each experiment yielded an average
value for the smallest resolvable textural area. The
actual metric values for region size of course were
dependent on the nature and resolution of the scanning
and display devices. The next step was to see if it
was possible to compute functions of the two textured
regions which correlated well with the observed mini-
mal resolution size.

The structural interpretation of textural patterns
suggests that resolution size may be related to in-
tuitive impressions of coarseness or fineness. As
demonstrated above, it is possible to estimate visual
coarseness by using auto-correlation measures. We
might expect the size of the smallest resolvable tex-—
tured region to vary directly with the coarseness of
the pattern (and thus with the size of the elementary
texture elements)., If these assumptions are true,
then the size of the smallest readable characters in
the resolution experiments should vary inversely to
the ratilo ¢(0)/e(l) for the central texture. In
fact, this does not happen. The correlation coeffi-
cient between the width of the smallest readable
character and the auto-correlation ratio is less than
~0.1. Other auto-correlation ratio measures per-
formed even worsé. Figure 4 shows a plot of average
minimal width versus c(0)/c(1).

One of the difficulties with estimating minimal re-
solution sizes using a statistical characterization of
the central textured region is that it ignores the
effects of the surrounding image areas. This contex-
tual information may often constitute a dominant in-
fluence on perception. A previous paper describes a
technique for numerically quantifying the perceived
dissimilarity between two textured regions. A set
of image statistics characterizing differences be-
tween the regions is computed. Unfortunately, none
of the commonly used textural measures taken alone is
capable of predicting perceived textural differences,
even over a limited domain of imagery. However, a
properly chosen linear combination of simple differ-—
ence measures is quite successful in simulating the
perception of textural differences.

This composite dissimilarity measure is computed for
central and background textures in each chart and the
value compared to the experimental resolution results.
The correlation coefficient between the dissimilarity
value and the size of the smallest readable character
is ~0.72. This is not surprising as it indicates
that the greater the dissimilarity between a region
and its surroundings, the easier it is to recognize
the region as being defined by a distinct pattern.
What is important to note is how much more significant
this effect is than the nature of the central texture
itself, Figure 5 is a plot of average minimal region
width versus computed textural dissimilarity.

It is interesting to investigate the results when
the experiments considered consist only of textural
pattern pairs lying in some specified range of dis-
similarity. For example, a fair number of the texture
pairs have dissimilarity measures in the range between
1.0 and 2.0. If only these samples are considered,
then the measure c(0)/c(2) correlates with character
size with a coefficient of -0.37. If samples in the
range 2.0 to 3.0 are considered, the correlation co-
efficient for the same ratio improves to =-0.79.

(Note, however, that this represents a relatively



small portion of the total samples.) monitored by the Air Force Eastern Test Range under
contract F08606~72-C~0008.

The results of the resolution experiments appear to
carry over into actual textural boundary detection
systems. Reference {3] describes a boundary operator
capable of locating pairs of adjacent image regions
with significant textural differences. It is possi-
ble to examine the performance of the system as a
function of the size of the regions being compared.

A close correspondence is found between the smallest
region size yielding effective boundary detection and
the experimentally determined minimal perceptual reso—
lution size.

V. Conclusion

The size of the region over which a textural pattern
is measured has a significant effect on how well that
texture can be characterized. Experimental results
show that a dominant influence on human textural re-
solution is the nature of the patterns surrounding
the region of interest. There is a well defined trade
off between spatial resolution of a textural boundary
and the ability to distinguish between visually simi-
lar textures. The structural interpretation of tex-
tural patterns suggests several additional methods
for estimating minimal resolution regions. Unfortu-
nately, at least one of these measures {(an auto-
correlation ratio) is not supported experimentally.

Fig. 1. Texture patterns ranked by auto-correlation
The most reasonable conclusions to draw from the ratio
above results seem to be that in attempting to pre-
dict the perceptual effects of textural patterns,
contextual considerations are of great importance.
The textural dissimilarity function provides a useful
tool for this analysis. If the nature of the textur-
al edges being searched for (or at least an estimate
of the edge strengths) is available, then an adequate
guess can be made as to the region size required.
Measures of textural properties which do not consider
context may also often be of value, but they are
sometimes dominated by other effects.
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Fig. 2. Eye chart template
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