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Why	this	paper?

• Kind	of	incredible	that	it’s	even	possible
• Let	alone	a	practical	NFS	implementation	with	it

• So	far	we’ve	only	considered	fail-stop	model

• Quite	a	bit	of	research	in	this	area
• Much	less	real-world	deployment
• Most	systems	being	built	today	don’t	span	trust	
domains
• Hard	to	reason	about	benefits	on	compromise



What	is	Byzantine	Behavior?

• Anything	that	doesn't	follow	our	protocol.
• Malicious	code/nodes.
• Buggy	code.
• Fault	networks	that	deliver	corrupted	packets.
• Disks	that	corrupt,	duplicate,	lose,	or	fabricate	data.
• Nodes	impersonating	others.
• Joining	cluster	without	permission.
• Operating	when	they	shouldn't	(e.g.	unexpected	clock	drift).

• Service	ops	on	a	partition	after	partition	was	given	to	another
• Really	wicked	bad	stuff:	any	arbitrary	behavior.
• Subject	to	restriction:	independence;	will	come	back	to	this.



Review:	Primary/Backup

• Want	linearizable semantics
• f	+	1	replicas	to	tolerate	f	failures
• Runs	into	problems	when	“view	changes”	are	
needed	(Lab	2).
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Review:	Consensus

• Replicated	log	=>	replicated	state	machine
• All	execute	same	commands	in	same	order

• Consensus	module	ensures	proper	log	replication
• Makes	progress	if	any	majority	of	servers	are	up
• 2f	+	1	servers	to	remain	available	with	up	to	f	failures

• Failure	model:	fail-stop	(not	Byzantine),	
delayed/lost	messages
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3f	+	1?

• At	f	+	1	we	can	tolerate	f	failures	and	hold	on	to	
data.
• At	2f	+	1	we	can	tolerate	f	failures	and	remain	
available.
• What	do	we	get	for	3f	+	1?
• SMR	that	can	tolerate	f	malicious	or	arbitrarily	
nasty	failures



First,	a	Few	Issues

1. Caveat:	Independence
2. Spoofing/Authentication



The	Caveat:	Independence

• Assumes	independent	node	failures	for	BFT!
• Is	this	a	big	assumption?
• We	actually	had	this	assumption	with	consensus
• If	nodes	fail	in	a	correlated	way	it	amplifies	the	loss	of	a	
single	node
• If	factor	is	>	f	then	system	still	wedges.

• Put	another	way:	for	Paxos to	remain	available	
when	software	bugs	can	produce	temporally	
related	crashes	what	do	we	need?
• 2f	+	1	independent	implementations…



The	Struggle	for	Independence

• Same	here:	for	true	independence	we’ll	need	3f	+	1	
implementations
• But	it	is	more	important	here

1. Nodes	may	be	actively	malicious	and	that	should	be	ok.
• But	they	are	looking	for	our	weak	spot	and	will	exploit	to	amplify	
their	effect.

2. If	>	f	failures	here	anything can	happen	to	the	data.
• Attacker	might	change	it,	delete	it,	etc…	We’ll	never	know.

• Requires	different	implementations,	operating	systems,	root	
passwords,	administrators.	Ugh!



Spoofing/Authentication

get(X)



Malicious	Primary?

• Might	lie!
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Malicious	Primary?

• Might	lie!
• Solution:	direct	response
from	participants
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Malicious	Primary?

• Might	lie!
• Solution:	direct	response
from	participants
• Problem	again:
primary	just
lies	more get(X)
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The	Need	for	Crypto

• Need	to	be	able	to	authenticate	messages
• Public-key	crypto	for	signatures
• Each	client	and	server	has	a	private	and	public	key
• All	hosts	know	all	public	keys
• Signed	messages	are	signed	with	private	key
• Public	key	can	verify	that	message	came	from	host	
with	the	private	key
• While	we’re	on	it:	we’ll	need	hashes/digests	also



Authenticated	Messages

• Client	rejects	duplicates	or	unknown	signatures
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How	is	this	possible?	Why	3f	+	1?

• First,	remember	the	rules
• Must	be	able	to	make	progress	with	n	minus	f	
responses
• n	=	3f	+	1
• Progress	with	3f	+	1	- f	=	2f	+	1
• Often	4	total,	progress	with	3

• Why?	In	case	those	f	will	never	respond



Try	2f	+	1,	f	=	1

• Goal:	make	(safe)	progress	with	only	2	of	3	
responses.
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Try	2f	+	1,	f	=	1

• Problem:	what	if	S3	wasn’t	down,	but	slow
• Instead	the	failure	is	a	compromised	S2
• Client	can	wait	for	f	+	1	matching	responses
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Try	2f	+	1,	f	=	1

• Problem:	what	if	S3	is	behind,	doesn’t	know	value	of	X	yet?
• Can’t	distinguish	truth	without	f	+	1	known	good	values
• Fix:	replicate	to	at	least	2f+1,	tolerate	f	slow/down	=>	3f+1
• 2f	+	1	- f	=	f	+	1,	enough	to	determine	truth	in	face	of	f	lies
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3f	+	1

• Progress	with	only	2f	+	1	responses	and	safe
• Among	2f	+	1	only	f	can	be	bogus.	f	+	1	>	f.
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10,000ft	View

1. Client	sends	request	to	primary.
2. Primary	sends	request	to	all	backups.
3. Replicas	execute	the	request	and	send	the	reply	

to	the	client.
4. Client	waits	for	f	+	1	responses	with	the	same	

result.



Protocol	Pieces

• Deal	with	failure	of	primaries
• View	changes	(Lab	2/4	style)
• Similar	to	Raft,	VR

• Must	order	operations	within	a	view
• Must	ensure	operations	execute	within	their	view



Views

• System	goes	through	a	series	of	views
• In	view	v,	replica	(v	mod	(3f+1))	is	designated	
primary
• Responsible	for	selecting	the	order	of	operations
• Assigns	an	increasing	sequence	number	to	each	
operation

• Tentative	order	subject	to	replicas	accepting
• May	get	rejected	if	a	new	view	is	established
• Or	if	order	is	inconsistent	with	prior	operations



Request	Handling	Phases

• In	normal-case	operation,	use	two-phase	protocol	
for	request	r:
• Phase	1	(pre-prepare,	prepare)	goal:
• Ensure	at	least	f+1	honest	replicas	agree	that
If	request	r	executes	in	view	v,	will	execute	with	seqn

• Phase	2	(prepare,	commit)	goal:
• Ensure	at	least	f+1	honest	replicas	agree	that
Request	r	has	executed	in	view	v	with	seqn

• 2PC-like:
• Phase	1	quibble	about	order,	Phase	2	atomicity



Phase	1

• Client	to	Primary
{REQUEST,	op,	timestamp,	clientId}sc

• Primary	to	Replicas
{PRE-PREPARE,	view,	seqn,	h(req)}sp,	req

• Replicas	to	Replicas
{PREPARE,	view,	seqn,	h(req),	replicaId}sri

We define the committed and committed-local predi-
cates as follows: committed is true if and only
if prepared is true for all in some set of

1 non-faulty replicas; and committed-local
is true if and only if prepared is true and has
accepted 2 1 commits (possibly including its own)
from different replicas that match the pre-prepare for ;
a commit matches a pre-prepare if they have the same
view, sequence number, and digest.
The commit phase ensures the following invariant: if

committed-local is true for some non-faulty
then committed is true. This invariant and

the view-change protocol described in Section 4.4 ensure
that non-faulty replicas agree on the sequence numbers
of requests that commit locally even if they commit in
different views at each replica. Furthermore, it ensures
that any request that commits locally at a non-faulty
replica will commit at 1 or more non-faulty replicas
eventually.
Each replica executes the operation requested by
after committed-local is true and ’s state

reflects the sequential execution of all requests with
lower sequence numbers. This ensures that all non-
faulty replicas execute requests in the same order as
required to provide the safety property. After executing
the requested operation, replicas send a reply to the client.
Replicas discard requests whose timestamp is lower than
the timestamp in the last reply they sent to the client to
guarantee exactly-once semantics.
We do not rely on ordered message delivery, and

therefore it is possible for a replica to commit requests
out of order. This does not matter since it keeps the pre-
prepare, prepare, and commit messages logged until the
corresponding request can be executed.
Figure 1 shows the operation of the algorithm in the

normal case of no primary faults. Replica 0 is the primary,
replica 3 is faulty, and is the client.
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Figure 1: Normal Case Operation

4.3 Garbage Collection
This section discusses the mechanism used to discard
messages from the log. For the safety condition to hold,
messagesmust be kept in a replica’s log until it knows that

the requests they concern have been executed by at least
1 non-faulty replicas and it can prove this to others

in view changes. In addition, if some replica misses
messages that were discarded by all non-faulty replicas,
it will need to be brought up to date by transferring all
or a portion of the service state. Therefore, replicas also
need some proof that the state is correct.
Generating these proofs after executing every opera-

tion would be expensive. Instead, they are generated
periodically, when a request with a sequence number di-
visible by some constant (e.g., 100) is executed. We will
refer to the states produced by the execution of these re-
quests as checkpoints and we will say that a checkpoint
with a proof is a stable checkpoint.
A replicamaintains several logical copies of the service

state: the last stable checkpoint, zero ormore checkpoints
that are not stable, and a current state. Copy-on-write
techniques can be used to reduce the space overhead
to store the extra copies of the state, as discussed in
Section 6.3.
The proof of correctness for a checkpoint is generated

as follows. When a replica produces a checkpoint,
it multicasts a message CHECKPOINT to the
other replicas, where is the sequence number of the
last request whose execution is reflected in the state
and is the digest of the state. Each replica collects
checkpoint messages in its log until it has 2 1 of
them for sequence number with the same digest
signed by different replicas (including possibly its own
such message). These 2 1 messages are the proof of
correctness for the checkpoint.
A checkpoint with a proof becomes stable and the

replica discards all pre-prepare, prepare, and commit
messages with sequence number less than or equal to
from its log; it also discards all earlier checkpoints and

checkpoint messages.
Computing the proofs is efficient because the digest

can be computed using incremental cryptography [1] as
discussed in Section 6.3, and proofs are generated rarely.
The checkpoint protocol is used to advance the low

and high water marks (which limit what messages will
be accepted). The low-water mark is equal to the
sequence number of the last stable checkpoint. The high
water mark , where is big enough so that
replicas do not stall waiting for a checkpoint to become
stable. For example, if checkpoints are taken every 100
requests, might be 200.

4.4 View Changes
The view-change protocol provides liveness by allowing
the system tomake progress when the primary fails. View
changes are triggered by timeouts that prevent backups
from waiting indefinitely for requests to execute. A
backup iswaiting for a request if it received a valid request

5



Phase	1

• Each	replica	waits	for
PRE-PREPARE	+	2f	matching	PREPARE	messages
• Puts	these	messages	in	its	log	
• Then	we	say	prepared(req,	v,	n,	i)	is	TRUE
• If	prepared(req,	v,	n,	i)	is	TRUE	for	honest	replica	ri
then	prepared(req',	v,	n,	j)	where	req'	!=	req FALSE
for	any	honest	rj
• So	no	other	operation	can	execute	with	view	v	sequence	
number	n
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Why	No	Double	Prepares?

prepared(req,	v,	n,	i)	→	not	prepared(req’,	v,	n,	j)
for	honest	ri and	rj
Honest	intersection	of	maximally	disjoint	2f+1	sets	is	
non-empty

2f	+	1

2f	+	1



Phase	2

• Problem:	Just	because	some	other	req'	won't	
execute	at	(v,	n)	doesn't	mean	req will



Problem:	Prepared	!=	Committed

• S3	prepared,	but	couldn’t	get	PREPARE	out
• S2	becomes	primary	in	new	view
• Can’t	find	PRE-PREPARE	+	2f	PREPAREs	in	any	log

• S1:	{S1,	S2},	S2:	{S1,	S2},	S4:	{}
• New	primary	must	fill	‘hole’	so	log	can	move	forward

C
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S4

Pre-prepare

Prepares

View	Change New	View



Phase	2

• Make	sure	op	doesn't	execute	until
prepared(req,	v,	n,	i)	is	TRUE	for	f+1	non-faulty	
replicas
• We	say	committed(req,	v,	n)	is	TRUE	when	this	
property	holds
• How	does	replica	know	committed(req,	v,	n)	holds?
• Add	one	more	message:	ri ->	R
{COMMIT,	view,	seqno,	h(req),	replicaId}
• Once	2f+1	COMMITs	at	a	node,	then	apply	op	and	
respond	to	client



View	Changes

• Allows	progress	if	primary	fails	(or	is	slow)
• If	operation	on	backup	pending	for	long	time
{VIEW-CHANGE,	view	+	1,	seqn,	ChkPointMgs,	P,	i}si
• New	primary	issues	NEW-VIEW	once	2f	VC	msgs

• Includes	signed	VIEW-CHANGEs	as	proof	it	can	change	view
• Q:	What	goes	wrong	without	this?

• Then,	for	each	seqno since	lowest	stable	checkpoint
• Use	P	from	above:	set	of	sets	of	PRE-PREPARE	+	2f	PREPARES
• For	seqno with	valid	PRE-PREPARE	+	2f	PREPARE,	reissue	PRE-
PREPARE	in	v	+	1

• For	seqno not	in	P,	{PRE-PREPARE,	v	+	1,	seqno,	null}



• Once	committed	at	least	f	+	1	non-faulty	replicas	
have	agreed	on	the	operation	and	its	placement	in	
the	total	order	of	operations
• Even	across	view	changes



Checkpoints/GC

• Need	to	occasionally	snapshot	SM	and	truncate	log
• Problem:	how	can	one	replica	trust	the	checkpoint	
of	another?
• Idea:	at	(seqn mod	100)	broadcast
{CHECKPOINT,	seqn,	h(state),	i}si
• Once	2f+1	CHECKPOINTs	have	been	collected	then	
can	trust	CHECKPOINT	at	seqn with	correct	digest
(at	least	f	+	1	non-faulty	servers	have	a	correct	
checkpoint	at	seqn)



Liveness	– View	Changes

• Interesting	issue:	can’t	let	a	single	node	start	a	view	change!
• Why?	Could	livelock the	system	by	spamming	view	changes.
• Resolution:	wait	for	f	+	1	servers	to	timeout	and	
independently	send	VIEW-CHANGE	requests.
• Interacts	with	an	optimization:	to	try	to	ensure	that	view	
changes	succeed	if	any	node	that	gets	more	than	f	+	1	VIEW-
CHANGE	requests	issues	one	as	well.
• This	prevents	cases	where	they	timeout	slowly	and	then	the	oldest	
VIEW-CHANGE	issuer	rolls	over	to	VIEW-CHANGE	v	+	2.

• Have	to	be	careful	still:	need	to	wait	on	this	optimization	until	f	+	1	
VIEW-CHANGES	away	from	v.

• Why?	Otherwise	might	be	doing	the	bidding	of	a	malicious	node.	



Discussion

• What	problem	does	this	solve?
• Would	your	boss	be	ok	with	4	
designs/implementations?
• How	can	system	tolerate	more	than	f	(non-
simultaneous)	failures	over	its	lifetime?
• Periodically	recover	each	server?	Could	help	some…
• What	if	private	key	compromised?

• Important	point:	it	is	possible	to	operate	in	the	face	
of	Byzantine	faults
• Maybe	even	efficiently



Performance	Tricks

• Don’t	have	replicas	respond	with	operation	results,	just	
digests
• Only	primary	has	to	give	result

• Delays:	client	to	primary,	pre-prepare,	prepare,	commit,	
reply
• Idea:	commit	prepared	operations	tentatively.
• If	wrong,	rollback.
• Operations	unlikely	to	fail	to	commit	if	they	prepare	
successfully.

• Tentatively	execute	reads	against	tentative	operations,	
but	withhold	reply	until	all	operations	read	from	have	
committed.



Crypto

• Can’t	afford	digital	signatures	on	all	messages	to	
authenticate
• Instead	all	pairs	of	hosts	share	a	secret	key
• Send	MAC	of	each	message	(h(m	+	secret	key))	to	verify	
integrity,	authenticity.
• Problem:	what	about	messages	with	multiple	recipients?

• e.g.	client	operation	request	message?
• Can’t	let	faulty	nodes	spoof	operations.
• Put	a	vector	of	MACs	in	for	the	message,	one	for	every	node	in	the	
system.

• Probably	4	or	7	hosts.	Constant	time	to	verify,	linear	to	generate.
• 37	replicas,	MAC	vectors	still	100x	faster	to	generate	than	1024	bit	
RSA	sig.

• Output	is	also	smaller	than	a	1024	bit	sig.



Why	Pre-prepare,	Prepare,	
Commit?
• Pre-prepare

• Broadcast	viewno,	seqn,	and	message	digest.
• Backup	accepts

• If	digest	is	ok	for	the	message
• Backup	is	in	same	view
• Hasn’t	accepted	a	pre-prepare	for	seqno in	viewno with	a	different	
digest.

• If	it	accepts	it	broadcasts	prepare
• Prepare
• Commit

• Similar	to	our	decided;	informs	everyone	of	the	chosen	value
• Difference:	can’t	take	sender’s	word	for	it,	need	proof	that	
the	cluster	agrees.



Phase	2

• Just	because	some	other	req'	won't	execute	at	(v,	n)	
doesn't	mean	req will
• Suppose	ri is	compromised	right	after
prepared(req,	v,	n,	i)
• Suppose	no	other	replica	received	ri's PREPARE
• Suppose	f	replicas	are	slow	and	never	even	received	
the	PRE-PREPARE
• No	other	honest	replica	will	know	the	request	
prepared!
• Particularly	if	p	fails,	request	might	not	get	executed!	


