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m David Nister and Henrik Stewenius,Scalable Recognition
with a Vocabulary Tree, CVPR 2006.
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m To generate candidate matches, find patches that have the
most similar appearance (e.g., lowest SSD)

m Simplest approach: compare them all, take the closest (or
closest k, or within a thresholded distance)

%Source: Kristen Grauman
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m In stereo case, may constrain by proximity if we make
assumptions on max disparities.
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Descriptor’s
feature space

m Each patch / region has a descriptor, which is a point in
some high-dimensional feature space (e.g., SIFT)
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m When we see close points in feature space, we have similar
descriptors, which indicates similar local content.
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Database

m With potentially thousands of features per image, and
hundreds to millions of images to search, how to efficiently
find those that are relevant to a new image?

%Source: Kristen Grauman
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m An image matching scheme that scales efficiently to a
large number of objects is presented.

m Robust indexing of local image descriptors with respect to
background clutter and occlusion.

m The local region descriptors are hierarchically quantized in
a vocabulary tree.
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Collection of features or parts reveal the underlying object.
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Bag of
heatlles An object as

g =

a collection of local features

(bag-of-features)

 deals well with occlusion
« scale invariant
« rotation invariant

%Source: Kris Kitani
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spatial information of local features
can be ignored for object recognition (i.e., verification)
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it 2 T

class bag of features i bag of features Parts-and-shape model

Bag of Zhang et al. (2005) | Willamowski et al. (2004) | Fergus et al. (2003)
Features airplanes 98.8 97.1 90.2
cars (rear) 98.3 98.6 90.3
cars (side) 95.0 87.3 88.5
faces 100 99.3 96.4
motorbikes 98.5 98.0 92.5
spotted cats 97.0 — 90.0

Works pretty well for image-level classification

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

%Source: Kris Kitani



Image
Matching

Srikumar
Ramalingam

Bag of
Features

Bag of features: texture classification

histogram

CPUNTNILEOEXNY
Universal texton dictionary

LAANE-RLRCE Al of & 4 J

Julesz, 1981
Mori, Belongie and Malik, 2001

%Source:

Kris Kitani
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Vector Space Model

G. Salton. ‘Mathematics and Information Retrieval’ Journal of Documentation, 1979

Bag of
Features

i th News

1 6 2 1 0 0 0 1
Tartan | robot CHIMP CMU bio soft = ankle  sensor

Tartan Tim

jo-Inspired Robotic Device

o | 4 | o 1 4 |5 [ 3 | 2
Tartan = robot CHIMP CMU bio soft = ankle  sensor

%Source: Kris Kitani
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A document (datapoint) is a vector of counts over each word (feature)

vg = [n(wia) n(waa) -+ n(wra) f"\

Bag of n() counts the number of occurrences just a histogram over words
Features

The Newsy artan Tim

What is the similarity between two documents?
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A document (datapoint) is a vector of counts over each word (feature)

vg = [n(w1,q) n(weg) - n(wrg) 4\

n() counts the number of occurrences just a histogram over words

Srikumar
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Bag of
Features

The Newss Tartan Tin

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.
d(vi,vj) = cosf
V- Uj

~ llvallllog i

%Source: Kris Kitani
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m What makes the two problems different?

%Source: Kristen Grauman
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Bag of
Features

Each point is a .
local descriptor, .
e.g. SIFT vector. .

9Source: David Nister
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* Quantize via
clustering, let
cluster centers be
the prototype
“words”

Bag of
Features

\Word #2

Determine which
word to assign to
each new image
region by finding
the closest cluster
center.

Descriptor’s
feature space

9Source: David Nister
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* Example: each
group of patches
belongs to the
same visual word

Ahdh s hahahabdhahg
Aahahahdbbababa &
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%Source: Kristen Grauman
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Recall: Texture representation example

Windows with
primarily horizontal Both
edges —

Dimension 1 (mean d/dx| value)

Dimension 2 (mean d/dy value

Windows with Windows with
small gradientin  primarily vertical
both directions edges

%Source: Kristen Grauman

value
Win. #1| 4 10
Win#2 | 18 7
Win#o | 20 20

statistics to
summarize patterns

in small windows




Visual Vocabulary Information

Image
Matching
Srikumar

Ramalingam

m Sampling strategy: where to extract features?

Bag of . . . .
Features m Clustering / quantization algorithm

m Unsupervised vs. supervised
m What corpus provides features (universal vocabulary?)

m Vocabulary size, number of words

%Source: Kristen Grauman
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+ Database images are loaded into the index mapping
words to image numbers

%Source: Kristen Grauman
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New query image 9

91 2

* New query image is mapped to indices of database
images that share a word.

%Source: Kristen Grauman
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+ Summarize entire image
based on its distribution
(histogram) of word

Features occurrences. 1

* Analogous to bag of words A
representation commonly

ThLW =
used for documents. .
e
N vp Skl =0 S e
T L @

%Source: Kristen Grauman
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* Rank frames by normalized scalar product between their
(possibly weighted) occurrence counts---nearest
neighbor search for similar images.

(181 4 511 0] (d;,q)
eatures sim d', = J
- 9= g g
Z}lzl dj(i) *q(1)

JEa0 [3ia0

for vocabulary of V words

%Source: Kristen Grauman



tf-idf weighting
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* Term frequency — inverse document frequency

* Describe frame by frequency of each word within it,
bag of downweight words that appear often in the database

Features + (Standard weighting for text retrieval)

Total number of

Number of — .
occurrences of word — ni d N :Zf:gzzts n
i in document d  —_— —_
ti = log
. ny n; Number of documer
Number of words in _— word i occurs in, in
document d whole database

%Source: Kristen Grauman
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Visually defined query “Groundhog Day” [Rammis, 1993]

Bag of
Features
“Find this
clock”
“Find this
place”

Slide from Andrew Zisserman
Sivic & Zisserman, ICCV 2003
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retrieved shots

Example

Key frame 53026

End frame 53028

Bag of
Features

End frame 52348
]

| S
End frame 54201

Key frame 39126

Key frame 40826 Fud frame 41049

End frame 39300

Start frame 40760
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Video Google System
Query
region

1. Collect all words within
query region

2. Inverted file index to find
relevant frames

3. Compare word counts

4. Spatial verification

Features

Sivic & Zisserman, ICCV 2003

sawlelj paAaLlay

e Demo online at :
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html

K. Grauman, B. Leibe
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Scoring retrieval quality

Results (ordered):

Database size: 10 images

Bag of Query Relevant (total): 5 images

Features

precision = #relevant / #returned
recall = #relevant / #total relevant

precision

.4
recall

Slide credit: Ondrej Chum
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Database size: 10 images

Bag of Query Relevant (total): 5 images

Features

precision = #relevant / #returned
recall = #relevant / #total relevant

Scoring retrieval quality

precision

0.2 0.4 0.6 0.8
recall

Results (ordered):

"

Slide credit: Ondrej Chum
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Results (ordered):

Database size: 10 images
Bag of Query Relevant (total): 5 images

T
Features 11
precision = #relevant / #returned z
recall = #relevant / #total relevant

1 ﬁ -
0.8|
)
506
@
]
@
504
0.2
0 02 04 06 08
recall

Slide credit: Ondrej Chum
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Results (ordered):

Database size: 10 images

Bag of Query Relevant (total): 5 images

Features

precision = #relevant / #returned
recall = #relevant / #total relevant

PP

°

precision
e
b

°
=

°

0.2 0.4 0.6 0.8
recall

Slide credit: Ondrej Chum
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Scoring retrieval quality

Results (ordered):

Database size: 10 images
Query Relevant (total): 5 images

1
precision = #relevant / #returned m é
recall = #relevant / #total relevant

) - =

Bag of
Features

precision
o o
S 5

e
i

02 04 06 08
recall

Slide credit: Ondrej Chum
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Scoring retrieval quality

Results (ordered):

Database size: 10 images

Bag of Query Relevant (total): 5 images
Features

precision = #relevant / #returned
recall = #relevant / #total relevant

1 ——’7
08
508
k]
S
13
50.4
0.
% 0z 04 o 08

6
recall
Slide credit: Ondrej Chum
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Results (ordered):

Database size: 10 images

—_—
Bag of Query Relevant (total): 5 images !
Features .
precision = #relevant / #returned I’
recall = #relevant / #total relevant

T[]

o
P

precision
°

o

e

02 0.4 0.6 0.8 1
recall

Slide credit: Ondrej Chum
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Scoring retrieval quality

Results (ordered):

Database size: 10 images
Bag of Query Relevant (total): 5 images
Features

precision = #relevant / #returned
recall = #relevant / #total relevant

b b
> @ -

precision
°
2

e
R

o

0.
recall
Slide credit: Ondrej Chum
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3. Quantize features
using visual
vocabulary

4. Represent images
by frequencies of
“visual words”

%Source: Kris Kitani
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. Quantize features

using visual
vocabulary

. Represent images

by frequencies of
“visual words”

%Source:

Kris Kitani



Image
Matching

Bag of
Features

Standard Bag of Words Pipeline

. Extract features

. Learn “visual

vocabulary” L

| S STk fﬁA‘T—‘rx

. Quantize features

using visual
vocabulary

. Represent images

by frequencies of
“visual words”

%Source:

Kris Kitani
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4. Represent images
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%Source: Kris Kitani
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. Extract features

2. Learn "visual
Bag of vocabulary” Ih @ =

Features

3. Quantize features
using visual
vocabulary TL W =

4. Represent images
by frequencies of
“visual words”

I h W™

%Source: Kris Kitani



Feature Extraction

Image
Matching

kumar

Ramalingam

e Regular grid
* Vogel & Schiele, 2003
Bag of « Fei-Fei & Perona, 2005
Features * Interest point detector
* Csurka et al. 2004
* Fei-Fei & Perona, 2005
* Sivic et al. 2005
e Other methods
* Random sampling (Vidal-Naquet &
Ullman, 2002)

* Segmentation-based patches (Barnard
etal. 2003)

%Source: Kris Kitani
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Compute SIFT
descriptor Normalize patch

[Lowe’99]

Detect patches
[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]

[Sivic & Zisserman, ‘03]

%Source: Kris Kitani
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Bag of
Features
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Bag of
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Clustering

%Source: Kris Kitani
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Bag of
Features
L
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®
L)
[ J Clustering
L N J

%Source: Kris Kitani
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K-means Clustering

Bag of

Given k:
Features

l.Select initial centroids at random.

2.Assign each object to the cluster with the nearest
centroid.

3.Compute each centroid as the mean of the objects
assigned to it.

4 .Repeat previous 2 steps until no change.

%Source: Kris Kitani
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» Clustering is a common method for learning a visual
vocabulary or codebook
* Unsupervised learning process
« Each cluster center produced by k-means becomes a
E:agt L?fes codevector
» Codebook can be learned on separate training set
+ Provided the training set is sufficiently representative, the
codebook will be “universal”

« The codebook is used for quantizing features

* A vector quantizer takes a feature vector and maps it to the
index of the nearest codevector in a codebook

+ Codebook = visual vocabulary
» Codevector = visual word

%Source: Kris Kitani
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Building the
Vocabulary
Tree

An illustration of the process of building the vocabulary
tree. The hierarchical quantization is defined at each level
by k centers (in this case k = 3 ) and their Voronoi
regions.
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The vocabulary tree is built by hierarchical k-means
clustering.

m Descriptor vectors are used in the unsupervised training.

m First, an initial k-means process is run to define k cluster

Building the centers.
Vocabulary

Tree

m The training data is then partitioned into k groups, where
each group consists of the descriptor vectors closest to a
particular cluster center.

m The same process is then recursively applied to each group
of descriptor vectors, recursively defining quantization cells
by splitting each quantization cell into k new parts.
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[Nister & Stewenius, CVPR’06]

Slide credit: David Nister
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Tree

[Nister & Stewenius, CVPR’06]

Slide credit: David Nister
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[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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K. Grauman, B. Leibe Slide credit: David Nister
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K. Grauman, B. Leibe Slide credit: David Nister
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[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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K. Grauman, B. Leibe Slide credit: David Nister
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K. Grauman, B. Leibe Slide credit: David Nister



Vocabulary Tree

Image
Matching

e Training: Filling the tree

Building the
Vocabulary
Tree

[Nister & Stewenius, CVPR’06]

K. Grauman, B. Leibe Slide credit: David Nister
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Building the
Vocabulary
Tree

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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