Camera Pose Estimation and RANSAC

Srikumar Ramalingam

School of Computing
University of Utah

Presentation Outline

Camera Pose

Estimation and RANSAC

Srikumar
Ramalingam

Review
1 Review
Pose
Estimation
RANSAC

2 Pose Estimation

3 RANSAC

Camera Models and Projection (Reminder)

Camera Pose

Estimation and RANSAC

Srikumar Ramalingam

Review
Pose
Estimation
RANSAC

- Let the optical center be the origin of the camera.

■ Let $\left(X^{m}, Y^{m}, Z^{m}\right)$ be the coordinates of a 3D point \mathbf{Q}, relative to the world system.
■ Let the 2D pixel be denoted by $\mathbf{q}(u, v, 1)^{T}$.

Camera Models and Projection (Reminder)

Camera Pose

Estimation and RANSAC

Srikumar Ramalingam

- Projection of 3D point on the image:

$$
\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right) \sim\left(\begin{array}{ll}
\mathrm{K} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{R} & -\mathrm{Rt} \\
\mathbf{0}^{T} & 1
\end{array}\right)\left(\begin{array}{c}
X^{m} \\
Y^{m} \\
Z^{m} \\
1
\end{array}\right)
$$

- The following 3×3 matrix is the camera matrix:

$$
\mathrm{K}=\left(\begin{array}{ccc}
k_{u} f & 0 & k_{u} x_{0} \\
0 & k_{v} f & k_{v} y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

Projection Matrix (Reminder)

Camera Pose

Estimation
and RANSAC
Srikumar
Ramalingam

- The projection matrix that maps 3D points to 2D image is given by:

$$
\begin{gathered}
\mathrm{P}=\left(\begin{array}{ll}
\mathrm{K} & \mathbf{0}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{R} & -\mathrm{R} \mathbf{t} \\
\mathbf{0}^{T} & 1
\end{array}\right) \\
\mathrm{P}=\left(\begin{array}{ll}
\mathrm{KR} & -\mathrm{KRt}
\end{array}\right) \\
\mathrm{P}=\mathrm{KR}\left(\begin{array}{ll}
\mathrm{I} & -\mathbf{t}
\end{array}\right)
\end{gathered}
$$

What is Camera Calibration?

- The task refers to the problem of computing the calibration matrix K .
- In other words, we compute the focal length, principal point, and aspect ratio in the camera matrix.

Forward Projection

Camera Pose

Estimation
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

$$
\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right) \sim \operatorname{KR}\left(\begin{array}{ll}
1 & -\mathbf{t}
\end{array}\right)\left(\begin{array}{c}
X^{m} \\
Y^{m} \\
Z^{m} \\
1
\end{array}\right)
$$

Backward Projection

Camera Pose Estimation and RANSAC

Srikumar
Ramalingam

Review

Pose

Estimation
RANSAC

$$
\mathbf{Q} \sim \mathrm{K}^{-1} \mathbf{q}
$$

$$
\mathbf{Q} \sim \mathrm{K}^{-1}\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right)
$$

Presentation Outline

```
Camera Pose
    Estimation
and RANSAC
    Srikumar
Ramalingam

\author{
2 Pose Estimation
}

\section*{3 RANSAC}

\section*{What is pose estimation?}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

The problem of determining the position and orientation of the camera relative to the object (or vice-versa).


Left: Camera Image, Right: 3D model of the world

\section*{What is pose estimation?}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

The problem of determining the position and orientation of the camera relative to the object (or vice-versa).


We use the correspondences between 2D image pixels (and thus camera rays) and 3D object points (from the world) to compute the pose.

\section*{Pose Estimation}

\section*{Camera Pose}

Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
■ We consider that the camera is calibrated, i.e. we know its calibration matrix K .
- We are given three 2D image to 3D object correspondences. Let the 32 D points be given by:
\[
\mathbf{q}_{1}=\left(\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right) \quad \mathbf{q}_{2}=\left(\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right) \quad \mathbf{q}_{3}=\left(\begin{array}{c}
u_{3} \\
v_{3} \\
1
\end{array}\right)
\]
- Let the 3 3D points be given by:
\[
\mathbf{Q}_{1}^{m}, \mathbf{Q}_{2}^{m}, \mathbf{Q}_{3}^{m}
\]

\section*{Input and Unknowns}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

Given \(\mathbf{q}_{\mathbf{i}}, \mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}, i=\{1,2,3\}\), and K in the following equation:
\[
\mathbf{q}_{\mathbf{i}}=\mathrm{K} \mathbf{R}\left(\begin{array}{ll}
\mathrm{I} & -\mathbf{t}
\end{array}\right) \mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}, i=\{1,2,3\}
\]

Our goal is to compute the rotation matrix R and the translation \(\mathbf{t}\).

\section*{Pairwise Distance Computation}

\section*{Camera Pose}

Estimation
and RANSAC
Srikumar
Ramalingam

Review
- Given the three 3D points \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}, i=\{1,2,3\}\) we compute the 3 pairwise distances \(d_{12}, d_{23}\), and \(d_{31}\) as follows:
\[
d_{i j}=\operatorname{dist}\left(\mathbf{Q}_{\mathbf{i}}^{m}, \mathbf{Q}_{\mathbf{j}}^{m}\right)
\]
\[
\begin{aligned}
& \operatorname{dist}\left(\mathbf{Q}_{\mathbf{i}}^{m}, \mathbf{Q}_{\mathbf{j}}^{m}\right)= \\
& \sqrt{\left(X_{i}^{m}-X_{j}^{m}\right)^{2}+\left(Y_{i}^{m}-Y_{j}^{m}\right)^{2}+\left(Z_{i}^{m}-Z_{j}^{m}\right)^{2}}
\end{aligned}
\]

\section*{World frame to Camera frame}
- Let the three 3D points \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}, i=\{1,2,3\}\) be denoted by \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}, i=\{1,2,3\}\) in the camera coordinate system.
■ In other words, we have \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}=\mathrm{RQ}_{\mathbf{i}}^{\mathbf{m}}-\mathrm{R} \mathbf{t}\).
- Here \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}\) 's are known variables and \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}\) 's are unknowns.
- It is easy to observe the following since the distance between two points do not change when we transform them from one coordinate frame to another:
\[
\operatorname{dist}\left(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}, \mathbf{Q}_{\mathbf{j}}^{\mathbf{m}}\right)=\operatorname{dist}\left(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}, \mathbf{Q}_{\mathbf{j}}^{\mathbf{c}}\right)
\]

\section*{Reformulation of Pose Estimation}

\section*{Camera Pose \\ Estimation} and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We can compute \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}\) as follows:
\[
\begin{gathered}
\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}} \sim \mathrm{K}^{-1} \mathbf{q}_{\mathbf{i}} \\
\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}=\lambda_{i} \mathrm{~K}^{-1} \mathbf{q}_{\mathbf{i}}
\end{gathered}
\]

Here \(\lambda_{i}\) is an unknown scalar that determines the distance of the 3D point \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}\) from the optical center along the ray \(\mathbf{O Q}_{\mathbf{i}}^{\mathbf{c}}\).

\section*{Reformulation of Pose Estimation}

\section*{Camera Pose}

Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

\[
\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}=\lambda_{i} \mathrm{~K}^{-1} \mathbf{q}_{\mathbf{i}}
\]

We simplify the notations, let us denote \(\mathrm{K}^{-1} \mathbf{q}_{\mathbf{i}}\) as follows:
\[
\mathrm{K}^{-1} \mathbf{q}_{\mathbf{i}}=\left(\begin{array}{c}
X_{i}  \tag{1}\\
Y_{i} \\
Z_{i}
\end{array}\right)
\]

\section*{Reformulation of Pose Estimation}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

\[
\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}=\lambda_{i}\left(\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i}
\end{array}\right)
\]

The pose estimation can be seen as the computation of the unknown \(\lambda_{i}\) parameters.

\section*{Reformulation of Pose Estimation}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

\(\operatorname{dist}\left(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}, \mathbf{Q}_{\mathbf{j}}^{\mathbf{j}}\right)=\operatorname{dist}\left(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}, \mathbf{Q}_{\mathbf{j}}^{\mathbf{m}}\right)=d_{i j}, \forall i, j=\{1,2,3\}, i \neq j\)
\[
\sqrt{\left(\lambda_{i} X_{i}-\lambda_{j} X_{j}\right)^{2}+\left(\lambda_{i} Y_{i}-\lambda_{j} Y_{j}\right)^{2}+\left(\lambda_{i} Z_{i}-\lambda_{j} Z_{j}\right)^{2}}=d_{i j}
\]

\section*{Reformulation of Pose Estimation}

\section*{Camera Pose \\ Estimation} and RANSAC

Srikumar
Ramalingam
Review
Pose
Estimation
RANSAC

\(\left(\lambda_{1} X_{1}-\lambda_{2} X_{2}\right)^{2}+\left(\lambda_{1} Y_{1}-\lambda_{2} Y_{2}\right)^{2}+\left(\lambda_{1} Z_{1}-\lambda_{2} Z_{2}\right)^{2}=d_{12}^{2}\)
\(\left(\lambda_{2} X_{2}-\lambda_{3} X_{3}\right)^{2}+\left(\lambda_{2} Y_{3}-\lambda_{3} Y_{3}\right)^{2}+\left(\lambda_{2} Z_{2}-\lambda_{3} Z_{3}\right)^{2}=d_{23}^{2}\)
\(\left(\lambda_{3} X_{3}-\lambda_{1} X_{1}\right)^{2}+\left(\lambda_{3} Y_{3}-\lambda_{1} Y_{1}\right)^{2}+\left(\lambda_{3} Z_{3}-\lambda_{1} Z_{1}\right)^{2}=d_{31}^{2}\)
We have 3 quadratic equations and 3 unknowns.

\section*{Reformulation of Pose Estimation}

\section*{Camera Pose}

Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC
\[
\begin{aligned}
& \left(\lambda_{1} X_{1}-\lambda_{2} X_{2}\right)^{2}+\left(\lambda_{1} Y_{1}-\lambda_{2} Y_{2}\right)^{2}+\left(\lambda_{1} Z_{1}-\lambda_{2} Z_{2}\right)^{2}=d_{12}^{2} \\
& \left(\lambda_{2} X_{2}-\lambda_{3} X_{3}\right)^{2}+\left(\lambda_{2} Y_{3}-\lambda_{3} Y_{3}\right)^{2}+\left(\lambda_{2} Z_{2}-\lambda_{3} Z_{3}\right)^{2}=d_{23}^{2} \\
& \left(\lambda_{3} X_{3}-\lambda_{1} X_{1}\right)^{2}+\left(\lambda_{3} Y_{3}-\lambda_{1} Y_{1}\right)^{2}+\left(\lambda_{3} Z_{3}-\lambda_{1} Z_{1}\right)^{2}=d_{31}^{2}
\end{aligned}
\]
- We have 3 quadratic equations and 3 unknowns.
- We can have a total of \(2^{3}\) possible solutions for the three parameters \(\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)\).
- Several numerical methods exist to solve the polynomial system of equations.

\section*{How to identify a unique solution?}
- Out of the 8 solutions, only one will be the correct solution.
- In some of the solutions, the 3D point will be behind the camera.
- Using additional point correspondence, we can identify the correct solution.

\section*{Computing the Pose}

Review
Pose
Estimation
RANSAC
- We remind you the relation between \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}\) and \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}\) : \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}=\mathrm{R}_{\mathbf{i}}^{\mathbf{m}}-\mathrm{Rt}\).
- We are given \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{m}}\) and we have computed \(\mathbf{Q}_{\mathbf{i}}^{\mathbf{c}}\).
- From three 3D-to-3D point correspondences we can compute the transformation parameters ( \(\mathrm{R}, \mathrm{t}\) ) using Horn's method.

\section*{Presentation Outline}

\section*{Camera Pose \\ Estimation} and RANSAC

Srikumar
Ramalingam

Review
1. Review

Pose
Estimation
RANSAC

\section*{2 Pose Estimation}

3 RANSAC

\section*{Matching Images}

\section*{Camera Pose}

Estimation
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.
- One of the matches is incorrect!

\section*{Matching Images}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.
- One of the matches is incorrect!
- In a general image matching problem, we can have 100's of incorrect matches.

\section*{Outliers and Inliers}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Outliers and Inliers}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


We match keypoints from left and right images.

\section*{Robustness}

Camera Pose
Estimation and RANSAC

Srikumar Ramalingam

Review

Pose
Estimation
RANSAC

■ Lets consider a simpler example linear regression.


Problem: Fit a line to these datapoints


Least squares fit
- How can we fix this?

Slide: Noah Snavely

\section*{Idea}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC
- Given a hypothesized line.
- Count the number of points that agree with the line, i.e., points within a small distance of the line.
- For all possible lines, select the one with the largest number of inliers.

Slide: Noah Snavely

\section*{Counting Inliers}

Camera Pose
Estimation
Estimation and RANSAC

Srikumar
Ramalingam

Review

\section*{Pose}

Estimation
RANSAC


Slide: Noah Snavely

\section*{Counting Inliers}

- 3 inliers

Slide: Noah Snavely

\section*{Counting Inliers}

\section*{Camera Pose \\ Estimation}
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

- 20 inliers!

Slide: Noah Snavely

\section*{How do we find the best line?}
- Unlike least-squares, no simple closed-form solution

■ Hypothesize-and-test
- Try out many lines, keep the best one
- Which lines?

\section*{Translations}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review

Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review

Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review

Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Slide: Noah Snavely

\section*{RANdom SAmple Consensus}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


Output the translation with the highest number of inliers

Slide: Noah Snavely

\section*{RANSAC}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

\section*{Idea:}
- All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
- RANSAC only has guarantees if there are \(\leq 50 \%\) outliers
- All good matches are alike; every bad match is bad in its own way - Alyosha Efros, CMU
Slide: Noah Snavely

\section*{Pose Estimation}

Camera Pose
Estimation
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC


- Inliers?

\section*{Pose Estimation}

Camera Pose
Estimation
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

- Inliers?

\section*{Pose Estimation}

Camera Pose
Estimation
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

- Inliers?

\section*{Pose Estimation}

Camera Pose
Estimation
and RANSAC
Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

- Inliers?

\section*{RANSAC}
- Inlier threshold related to the amount of noise we expect in inliers
- Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we would like to guarantee
- Suppose there are \(20 \%\) outliers, and we want to find the correct answer with \(99 \%\) probability
- How many rounds do we need?

\section*{Sample size}

\section*{Camera Pose}

Estimation and RANSAC

Srikumar
Ramalingam

Review

\section*{Pose}

Estimation
RANSAC

- How do we generate a hypothesis?

Slide: Noah Snavely

\section*{General Version - RANSAC}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC

1 Randomly choose s samples
- Typically \(\mathrm{s}=\) minimum sample size that lets you fit a model

2 Fit a model (e.g., line) to those samples
3 Count the number of inliers that approximately fit the model

4 Repeat N times
5 Choose the model that has the largest set of inliers
Slide: Noah Snavely

\section*{How many rounds?}

Camera Pose
Estimation and RANSAC

Srikumar
Ramalingam

Review
Pose
Estimation
RANSAC
\begin{tabular}{cccccccc}
\hline \multicolumn{9}{c}{ proportion of outliers \(e\)} \\
\hline s & \(5 \%\) & \(10 \%\) & \(20 \%\) & \(25 \%\) & \(30 \%\) & \(40 \%\) & \(50 \%\) \\
\hline 2 & 2 & 3 & 5 & 6 & 7 & 11 & 17 \\
3 & 3 & 4 & 7 & 9 & 11 & 19 & 35 \\
4 & 3 & 5 & 9 & 13 & 17 & 34 & 72 \\
5 & 4 & 6 & 12 & 17 & 26 & 57 & 146 \\
6 & 4 & 7 & 16 & 24 & 37 & 97 & 293 \\
7 & 4 & 8 & 20 & 33 & 54 & 163 & 588 \\
8 & 5 & 9 & 26 & 44 & 78 & 272 & 1177 \\
\hline
\end{tabular}
- If we have to choose s samples each time
- with an outlier ratio e
- and we want the right answer with probability \(p\)

Slide: M. Pollefeys

\section*{Acknowledgments}

Some presentation slides are adapted from the following materials:
- Peter Sturm, Some lecture notes on geometric computer vision (available online).
■ Kristen Grauman's computer vision lecture slides
- Noah Snavely's computer vision lecture slides```

