HW3: Belief Propagation

Srikumar Ramalingam
CS 6320-3D Computer Vision
Due: 11:59 PM on $03 / 03 / 2017$

Please submit a zip file containing a PDF document (solutions to the problems).

1. You have 2 Boolean variables $\left(x_{1}, x_{2} \in\{0,1\}\right)$ and 3 equations as shown below:

$$
\begin{aligned}
2 x_{1}-3 x_{2} & =-3 \\
x_{1}+5 x_{2} & =5 \\
6 x_{1}-4 x_{2} & =-4
\end{aligned}
$$

Show the factor graph and use Belief propagation to solve the equations. Please show the messages in each iteration till the algorithm terminates. [50 points]
2. You are given two images: I1 (2 x 2 pixel grid) and I2 (2 x 3 pixel grid) as shown in Figure 1. Find the match for every pixel in the first image I1. Every pixel $p(x, y)$ in I1 can be matched to a pixel $p^{\prime}(x, y)$ or $p^{\prime}(x+1, y)$ in I2. In other words, every pixel in I1 can have only two disparity states $[0,1]: 0$ when $p(x, y)$ is matched to $p^{\prime}(x, y)$, and 1 when $p(x, y)$ is matched to $p^{\prime}(x+1, y)$. The unary for a pixel $p(x, y)$ (cost function that depends only on a single pixel in I1) is given by:
$U(0)=\left|p(x, y)-p^{\prime}(x, y)\right|, U(1)=\left|p(x, y)-p^{\prime}(x+1, y)\right|$
The pairwise function depends on the states of two nearby pixels (in the image I1) and is given by:
$P(0,0)=0, P(0,1)=10, P(1,0)=10, P(1,1)=0$
Use Belief propagation to solve the matching problem. Please show the messages in each iteration till the algorithm terminates. [50 points]

50	0
50	0

I1

12

Factor
graph

Figure 1:

