## Introduction to Graphical Models

Srikumar Ramalingam School of Computing University of Utah

## Reference

- Christopher M. Bishop, Pattern Recognition and Machine Learning,
- Jonathan S. Yedidia, William T. Freeman, and Yair Weiss, Understanding Belief Propagation and its Generalizations, 2001.

http://www.merl.com/publications/docs/TR2001-22.pdf

• Jonathan S. Yedidia, Message-passing Algorithms for Inference and Optimization: "Belief Propagation" and "Divide and Concur"

http://people.csail.mit.edu/andyd/CIOG\_papers/yedidia\_jsp\_preprint\_ princeton.pdf

## Inference problems and Belief Propagation

- Inference problems arise in statistical physics, computer vision, errorcorrecting coding theory, and AI.
- BP is an efficient way to solve inference problems based on passing local messages.

- Probably the most popular type of graphical model
- Used in many application domains: medical diagnosis, map learning, language understanding, heuristics search, etc.

## Probability (Reminder)



Source: Wikipedia.org

- Sample space is the set of all possible outcomes. Example: S = {1,2,3,4,5,6}
- Power set of the sample space is obtained by considering all different collections of outcomes.

Example Power set =  $\{\{\}, \{1\}, \{2\}, ..., \{1,2\}, ..., \{1,2,3,4,5,6\}\}$ 

• An event is an element of Power set.

Example E = {1,2,3}

## Probability (Reminder)

- Assigns every event E a number in [0,1] in the following manner:  $p(A) = \frac{|A|}{|S|}$
- For example, let A = {2,4,6} denote the event of getting an even number while rolling a dice once:

$$p(A) = \frac{|\{2,4,6\}|}{|\{1,2,3,4,5,6\}|} = \frac{3}{6} = \frac{1}{2}$$

## Conditional Probability (Reminder)

- If A is the event of interest and we know that the event B has already occurred then the conditional probability of A given B:  $p(A|B) = \frac{p(A \cap B)}{p(B)}$
- The basic idea is that the outcomes are restricted to only B then this serves as the new sample space.
- Two events A and B are statistically independent if  $p(A \cap B) = p(A)p(B)$
- Two events A and B are mutually independent if  $p(A \cap B) = 0$

### Bayes Theorem (Reminder)

• Let A and B be two events and  $p(B) \neq 0$ .  $p(A|B) = \frac{p(A)p(B|A)}{p(B)}$ 

#### Reminder

#### Summary of probabilities

| Event     | Probability                                                                                                                                             |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A         | $P(A) \in [0,1]$                                                                                                                                        |  |
| not A     | $P(A^\complement) = 1 - P(A)$                                                                                                                           |  |
| A or B    | $egin{aligned} P(A\cup B) &= P(A) + P(B) - P(A\cap B) \ P(A\cup B) &= P(A) + P(B) \end{aligned} 	ext{ if A and B are mutually exclusive} \end{aligned}$ |  |
| A and B   | $egin{aligned} P(A \cap B) &= P(A B)P(B) = P(B A)P(A) \ P(A \cap B) &= P(A)P(B) & 	ext{ if A and B are independent} \end{aligned}$                      |  |
| A given B | $P(A \mid B) = rac{P(A \cap B)}{P(B)} = rac{P(B A)P(A)}{P(B)}$                                                                                        |  |

Source: Wikipedia.org

#### A murder mystery

A fiendish murder has been committed

Whodunit?

There are two suspects:

- the **Butler**
- the **Cook**





There are three possible murder weapons:

- a butcher's Knife
- a Pistol
- a fireplace Poker



#### **Prior distribution**

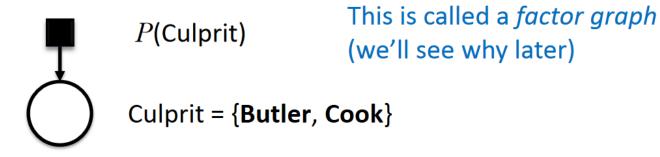
#### Butler has served family well for many years Cook hired recently, rumours of dodgy history

*P*(Culprit = **Butler**) = 20%

P(Culprit = Cook) = 80%

Probabilities add to 100%





#### **Conditional distribution**

Butler is ex-army, keeps a gun in a locked drawer Cook has access to lots of knives Butler is older and getting frail

 Pistol
 Knife
 Poker

 Cook
 5%
 65%
 30%
 = 100%

 Butler
 80%
 10%
 10%
 = 100%

P(Weapon | Culprit)

#### Factor graph Prior distribution P(Culprit) Culprit = {**Butler**, **Cook**} Conditional distribution P(Weapon | Culprit) Weapon = {**Pistol**, **Knife**, **Poker**}

#### Joint distribution

What is the probability that the **Cook** committed the murder using the **Pistol**?

*P*(Culprit = **Cook**) = 80%

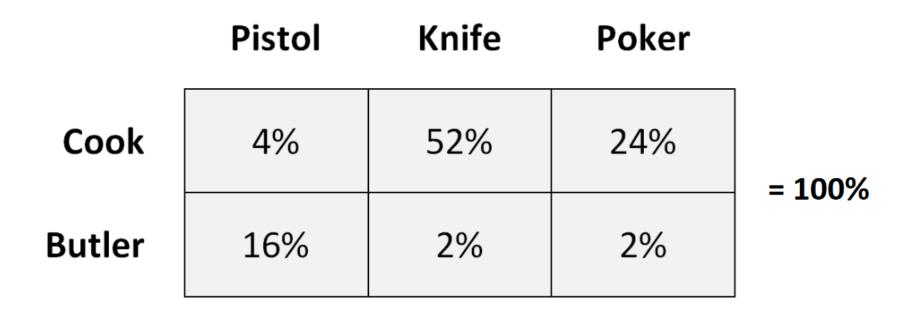
P(Weapon = Pistol | Culprit = Cook) = 5%



*P*(Weapon = **Pistol** , Culprit = **Cook**) = 80% x 5% = 4%

# Likewise for the other five combinations of Culprit and Weapon

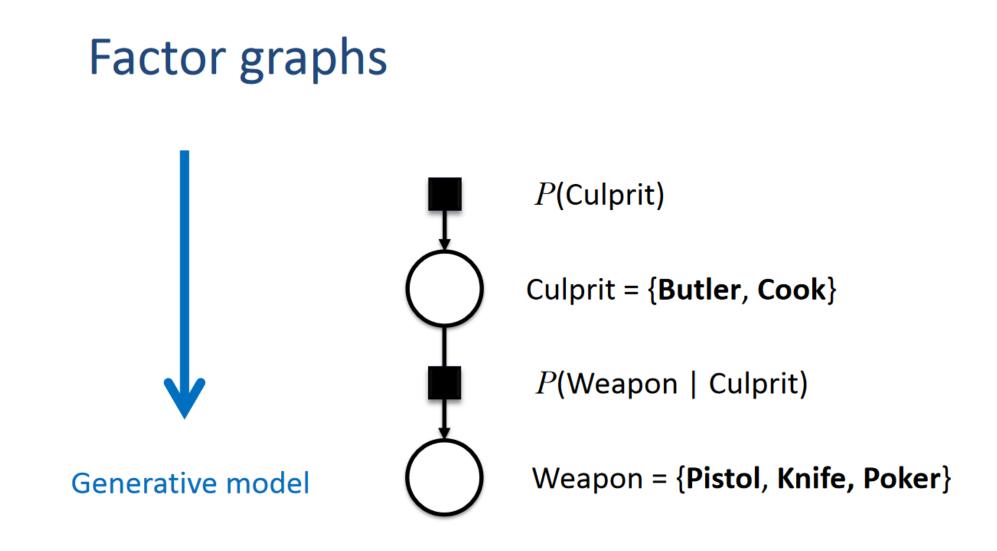
#### Joint distribution



*P*(Weapon, Culprit) = *P*(Weapon | Culprit) *P*(Culprit)

$$P(x,y) = P(y|x)P(x)$$

Product rule



P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit) Slide Source: Christopher M. Bishop

#### Generative viewpoint

| Murderer | Weapon |
|----------|--------|
| Cook     | Knife  |
| Butler   | Knife  |
| Cook     | Pistol |
| Cook     | Poker  |
| Cook     | Knife  |
| Butler   | Pistol |
| Cook     | Poker  |
| Cook     | Knife  |
| Butler   | Pistol |
| Cook     | Knife  |
|          |        |

#### Marginal distribution of Culprit

|        | Pistol | Knife | Poker |       |
|--------|--------|-------|-------|-------|
| Cook   | 4%     | 52%   | 24%   | = 80% |
| Butler | 16%    | 2%    | 2%    | = 20% |

$$P(x) = \sum_{y} P(x, y)$$

Sum rule

#### Marginal distribution of Weapon

|        | Pistol | Knife | Poker |
|--------|--------|-------|-------|
| Cook   | 4%     | 52%   | 24%   |
| Butler | 16%    | 2%    | 2%    |

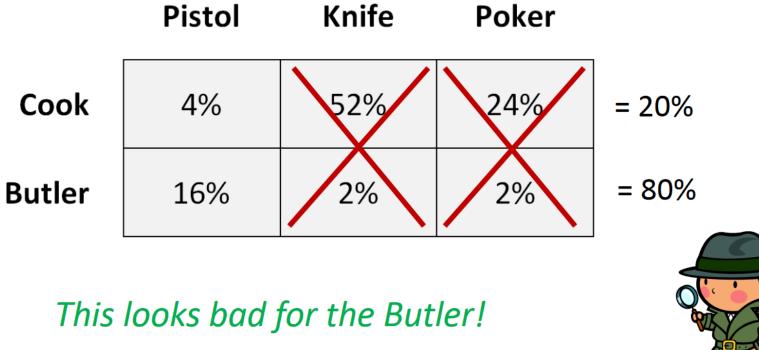
$$P(x) = \sum_{y} P(x, y)$$

Sum rule



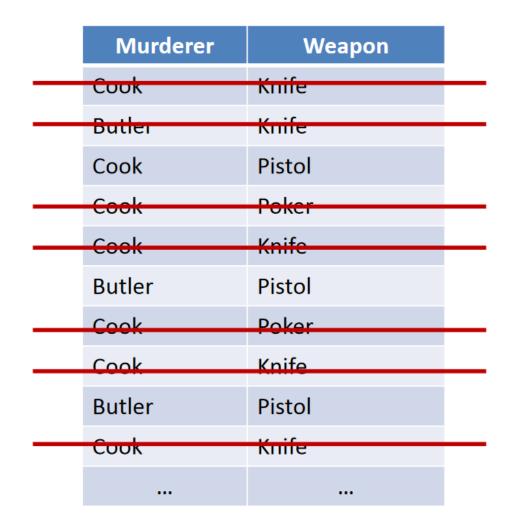


#### We discover a **Pistol** at the scene of the crime

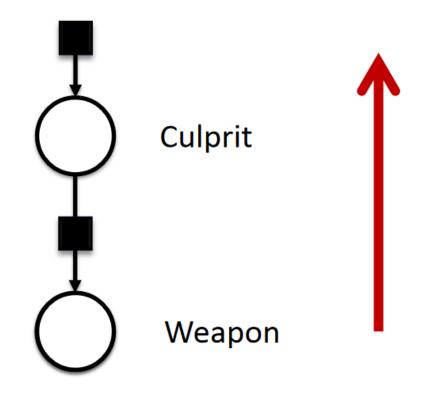


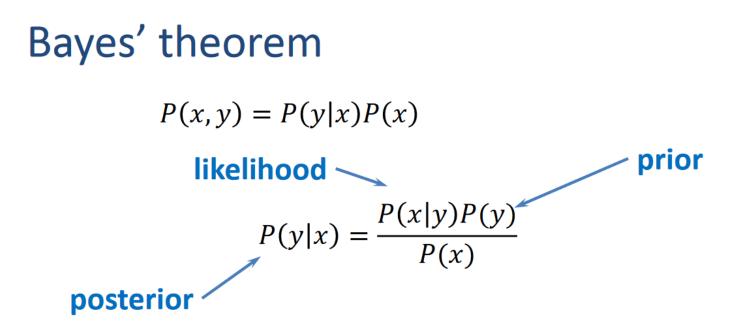


#### Generative viewpoint



#### **Reasoning backwards**





Prior – belief before making a particular obs.
Posterior – belief after making the obs.
Posterior is the prior for the next observation

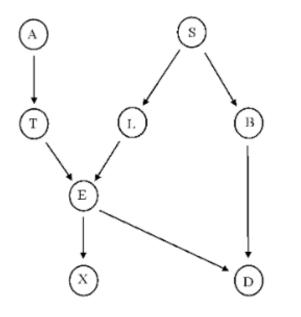
Intrinsically incremental

## Medical diagnosis problem

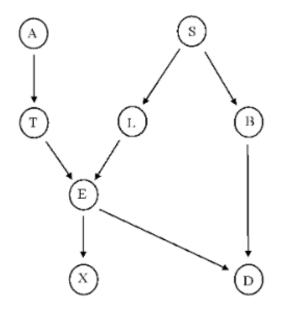
- We will have (possibly incomplete) information such as symptoms and test results.
- We would like the probability that a given disease or a set of diseases is causing the symptoms.

# Fictional Asia example (Lauritzen and Spiegelhalter 1988)

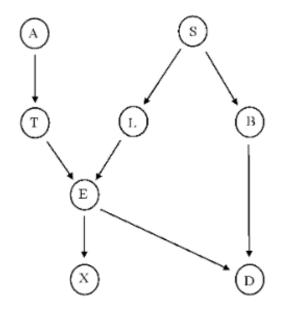
- A recent trip to Asia (A) increases the chance of Tuberculosis (T).
- Smoking is a risk factor for both lung cancer (L) and Bronchitis (B).
- The presence of either (E) tuberculosis or lung cancer can be treated by an X-ray result (X), but the X-ray alone cannot distinguish between them.
- Dyspnea (D) (shortness of breath) may be caused by bronchitis (B), or either (E) tuberculosis or lung cancer.



- Let  $x_i$  denote the different possible states of the node *i*.
- Associated with each arrow, there is a conditional probability.
- $p(x_L|x_S)$  denote the conditional probability that a patient has lung cancer given he does or does not smoke.



- $p(x_L|x_S)$  denote the conditional probability that a patient has lung cancer given he does or does not smoke.
- Here we say that "S" node is the parent of the "L" node.

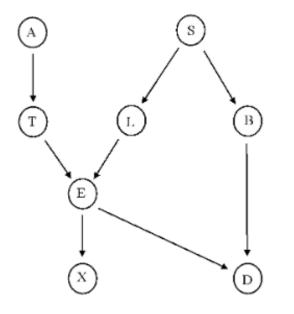


- Some nodes like D might have more than one parent.
- We can write the conditional probability as follows

 $p(x_D|x_E, x_B)$ 

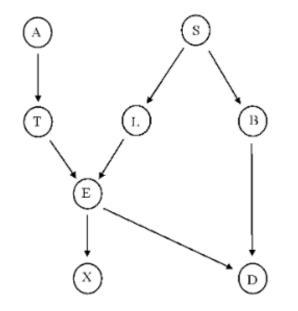
• Bayesian networks and other graphical models are most useful if the graph structure is sparse.

#### Joint probability in Bayesian networks



• The joint probability that the patient has some combination of the symptoms, test results, and diseases is just the product of the probabilities of the parents and the conditional ones:  $p(\{x\}) = p(\{x_A, x_S, x_T, x_L, x_B, x_E, x_X, x_D\})$ 

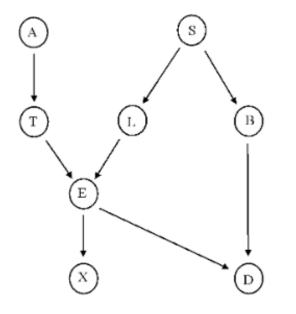
#### Joint probability in Bayesian networks



$$p(\{x\}) = p(\{x_A, x_S, x_T, x_L, x_B, x_E, x_X, x_D\})$$

 $= p(x_A)p(x_S)p(x_T|x_A)p(x_L|x_S)p(x_B|x_S)p(x_E|x_T,x_L)p(x_X|x_E)p(x_D|x_E,x_B)$ 

#### Joint probability in Bayesian networks



In general, Bayesian network is an acyclic directed graph with N random variables  $x_i$  that defines a joint probability function:

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_{i=1}^{\{N\}} p(x_i | Par(x_i))$$

## Marginal Probabilities

• Probability that a patient has a certain disease:

$$p(x_N) = \sum_{x_1} \sum_{x_2} \dots \sum_{x_{\{N-1\}}} p(x_1, x_2, \dots, x_N)$$

- Marginal probabilities are defined in terms of sums of all possible states of all other nodes.
- We refer to approximate marginal probabilities computed at a node  $x_i$  as beliefs and denote it as follows:

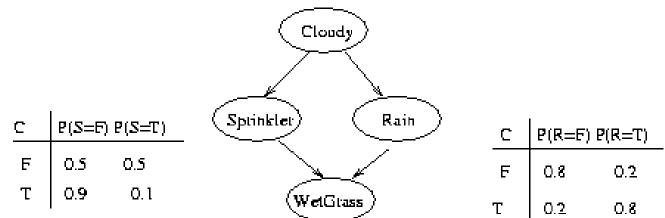
 $b(x_i)$ 

 The virtue of BP is that it can compute the beliefs (at least approximately) in graphs that can have a large number of nodes efficiently. P(C=F) P(C=T)

0.5

0.5

#### Bayesian Networks



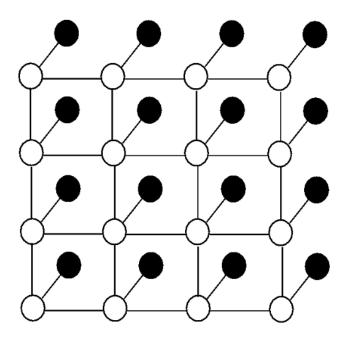
| SR | P(W=F) | P(W=T)          |
|----|--------|-----------------|
| FF | 1.0    | 0.0             |
| ТΕ | 0.1    | 0. <del>9</del> |
| FΤ | 0.1    | 0.9             |
| тт | 0.01   | 0.99            |

#### Courtesy: Keven Murphy

#### Pairwise Markov Random Fields

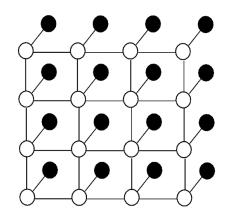
- Attractive theoretical model for many computer vision tasks (Geman 1984).
- Many computer vision problems such as segmentation, recognition, stereo reconstruction are solved.

#### Pairwise Markov Random Fields



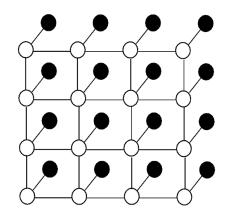
 In a simple depth estimation problem on an image of size 1000 x 1000, every node can have states from 1 to D denoting different distances from the camera center.

#### Pairwise Markov Random Fields



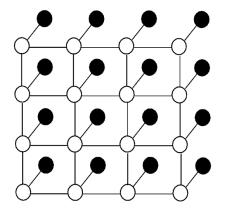
- Let us observe certain quantities about the image y<sub>i</sub> and we are interested in computing other entities about the underlying scene x<sub>i</sub>.
- The indices *i* denote certain pixel locations.
- Assume that there is some statistical dependency between  $x_i$  and  $y_i$ and let us denote it by some compatibility function  $\phi_i(x_i, y_i)$ , also referred to as the evidence.

### Pairwise Markov Random Fields



- To be able to infer anything about the scene, there should be some kind of structure on  $x_i$ .
- In a 2D grid,  $x_i$  should be compatible with nearby scene elements  $x_i$ .
- Let us consider a compatibility function  $\psi_{ij}(x_i, y_j)$  where the function connects only nearby pixel elements.

### Pairwise Markov Random Fields



$$p(\{x\},\{y\}) = \frac{1}{Z} \Pi_{\{ij\}} \psi_{ij}(x_i, x_j) \Pi_i \phi_i(x_i, y_i)$$

- Here Z is the normalization constant.
- The Markov Random fields is pairwise because the compatibility function depends only on pairs of adjacent pixels.
- There is no parent-child relationship in MRFs and we don't have directional dependencies.

### Potts Model

• The interaction  $J_{ij}(x_i, x_j)$  between two neighboring nodes is given by

$$J_{ij}(x_i, x_j) = \ln \psi_{ij}(x_i, x_j)$$

• The field  $h_i(x_i)$  at each node is given by

$$h_i(x_i) = \ln \phi_i(x_i, y_i)$$

#### Potts Model

• The Potts model energy is defined as below:

$$E(\lbrace x_i \rbrace) = -\sum_{ij} J_{ij}(x_i, x_j) - \sum_i h(x_i)$$

## Boltzmann's law from statistical mechanics

• The pairwise MRF exactly corresponds to the Potts model energy at temperature T = 1.

$$p(\{x_i\}) = \frac{1}{Z}e^{-\frac{E(\{x_i\})}{T}}$$

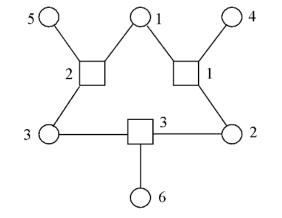
• The normalization constant Z is called the partition function.

## ISING model

- If the number of states is just 2 then the model is called an ising model.
- The problem of computing beliefs can be seen as computing local magnetizations in Ising model.
- The spin glass energy function is written below using two-state spin variables s<sub>i</sub> = {+1, −1}:

$$E(\lbrace s_i \rbrace) = -\sum_{ij} J_{ij}(s_i, s_j) - \sum_i h(s_i)$$

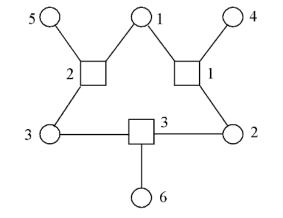
# Tanner Graphs and Factor Graphs



We have transmitted N = 6 bits with k = 3 parity check constraints.

- Error-correcting codes: We try to decode the information transmitted through noisy channel.
- The first parity check code forces the sum of bits from #1, #2, and #5 to be even.

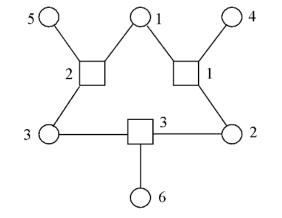
# Tanner Graphs and Factor Graphs



We have transmitted N = 6 bits with k = 3 parity check constraints.

- Let  $y_i$  be the received bit and the transmitted bit be given by  $x_i$ .
- Joint probability can be written as follows:
- $p(\{x, y\}) = \frac{1}{Z}\psi_{124}(x_1, x_2, x_4)\psi_{135}(x_1, x_3, x_5)\psi_{236}(x_2, x_3, x_6)\Pi_i p(y_i|x_i)$

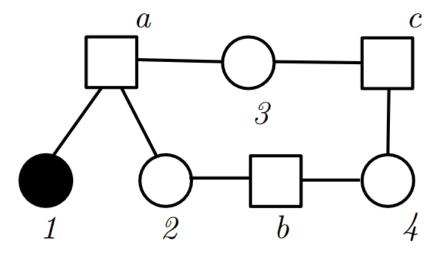
# Tanner Graphs and Factor Graphs



We have transmitted N = 6 bits with k = 3 parity check constraints.

- The parity check functions have values 1 when the bits satisfy the constraint and 0 if they don't.
- A decoding algorithm typically tries to minimize the number of bits that are decoded incorrectly.

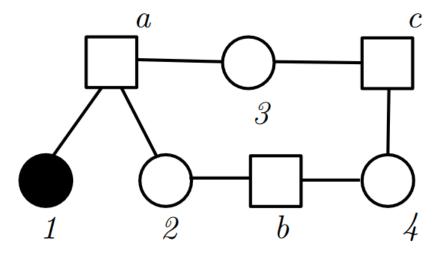
# Factor Graphs (Using Energy or Cost functions)



Toy factor graph with one observed variable, 3 hidden variables, and 3 factor nodes

• Factor graphs are bipartite graphs containing two types of nodes: variable nodes (circles) and factor nodes (squares).

# Factor Graphs (Using Energy or Cost functions)



Toy factor graph with one observed variable, 3 hidden variables, and 3 factor nodes

• 
$$C(x_1, x_2, x_3, x_4) = C_a(x_1, x_2, x_3) + C_b(x_2, x_4) + C_c(x_3, x_4)$$

# Factor Graphs (Using Energy or Cost functions)

|       |       |       |          |   | y               |                 |                   |
|-------|-------|-------|----------|---|-----------------|-----------------|-------------------|
| $x_1$ | $x_2$ | $x_3$ | $C_a$    |   | l               | -               | $\sim$            |
| 0     | 0     | 0     | $\infty$ |   |                 |                 |                   |
| 0     | 0     | 1     | 0        |   | L               | U<br>U          | ,<br>             |
| 0     | 1     | 0     | 0        |   | $\bigcirc$      |                 | $\vdash$          |
| 0     | 1     | 1     | $\infty$ | 1 | $\widetilde{2}$ | _               | b                 |
| 1     | 0     | 0     | 0        |   | $x_2$           | $x_4$           | C                 |
| 1     | 0     | 1     | $\infty$ |   | $\frac{x_2}{0}$ | $\frac{x_4}{0}$ | $C_b$<br>1.2      |
| 1     | 1     | 0     | $\infty$ |   | $\frac{0}{0}$   | $\frac{0}{1}$   | 1.2<br>1.7        |
| 1     | 1     | 1     | 0        |   | $\frac{0}{0}$   | $\frac{1}{2}$   | $\frac{1.7}{3.2}$ |
|       |       |       |          |   |                 |                 |                   |
|       |       |       |          |   | 1               | 0               | 1.9               |

0.6

.4

1

2

1

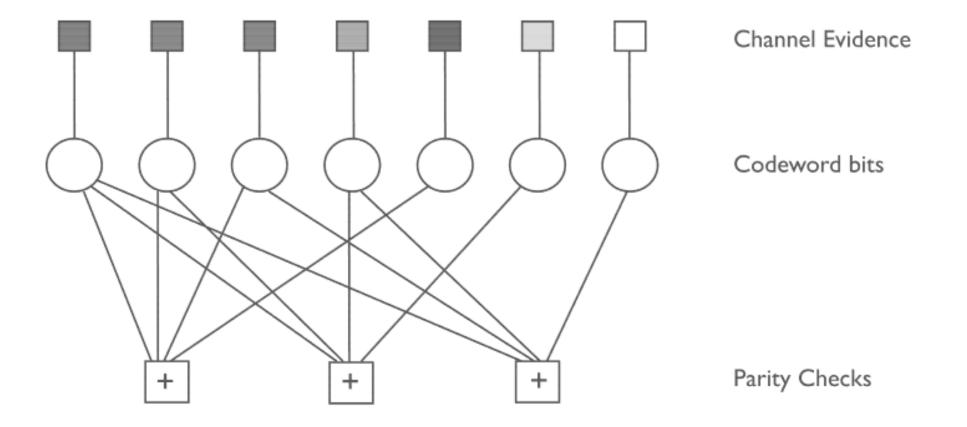
| $x_3$ | $x_4$ | $C_c$ |
|-------|-------|-------|
| 0     | 0     | 0.4   |
| 0     | 1     | 1.9   |
| 0     | 2     | 0.2   |
| 1     | 0     | 4.9   |
| 1     | 1     | 0.3   |
| 1     | 2     | 2.4   |

## Lowest Energy Configurations

• 
$$C(x_1, x_2, x_3, x_4) = C_a(x_1, x_2, x_3) + C_b(x_2, x_4) + C_c(x_3, x_4)$$

- Finding the lowest energy state and computing the corresponding variable assignments is a hard problem
- In most general cases, the problem is NP-hard.

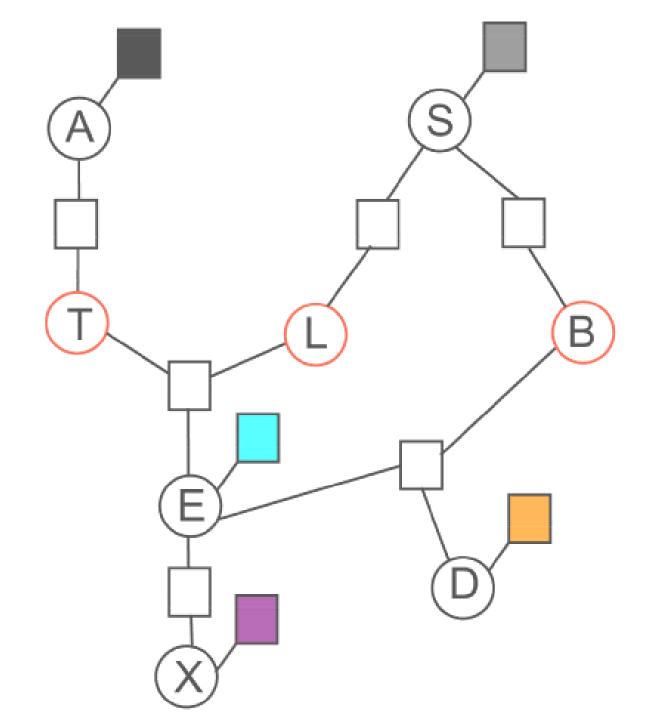
## Factor Graphs for Error Correction



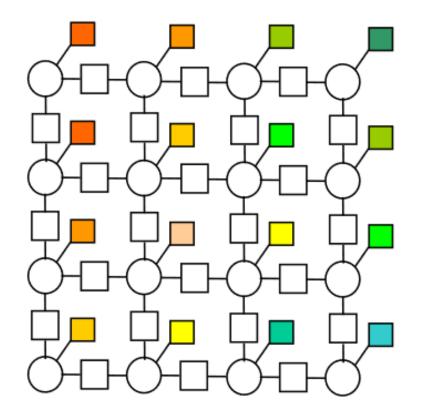
A factor graph for (N=7,k=3) Hamming code, which has 7 codeword bits, of the left-most four are information bits and the last 3 are parity bits.

Factor graph for the medical expert system

 Here the variables are given by Asia (A), Tuberculosis (T), Lung cancer (L), Smoker (S), Bronchitis (B), Either (E), X-ray (X), and D.



#### Stereo reconstruction in Computer Vision





# Set up the Factor graphs

- Point matching between 2 images given the Fundamental matrix.
- Point correspondences between 2 sets of 3D points.
- The classical problem of line-labeling.