How the backpropagation algorithm works
 Srikumar Ramalingam
 School of Computing
 University of Utah

Reference

Most of the slides are taken from the second chapter of the online book by Michael Nielson:

- neuralnetworksanddeeplearning.com

Introduction

- First discovered in 1970.
- First influential paper in 1986:

Rumelhart, Hinton and Williams, Learning representations by backpropagating errors, Nature, 1986.

Perceptron (Reminder)

$$
\text { output }= \begin{cases}0 & \text { if } w \cdot x+b \leq 0 \\ 1 & \text { if } w \cdot x+b>0\end{cases}
$$

Sigmoid neuron (Reminder)

- A sigmoid neuron can take real numbers $\left(x_{1}, x_{2}, x_{3}\right)$ within 0 to 1 and returns a number within 0 to 1 . The weights $\left(w_{1}, w_{2}, w_{3}\right)$ and the bias term b are real numbers.

Sigmoid function $\quad \sigma(z) \equiv \frac{1}{1+e^{-z}}$

Matrix equations for neural networks

$w_{j k}^{l}$ is the weight from the $k^{\text {th }}$ neuron in the $(l-1)^{\text {th }}$ layer to the $j^{\text {th }}$ neuron in the $l^{\text {th }}$ layer

The indices " j " and " k " seem a little counter-intuitive!

Layer to layer relationship

$$
\begin{aligned}
& a_{j}^{l}=\sigma\left(z_{j}^{l}\right) \\
& z_{j}^{l}=\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l} \\
& a_{j}^{l}=\sigma\left(\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}\right)
\end{aligned}
$$

- b_{j}^{l} is the bias term in the jth neuron in the Ith layer.
- a_{j}^{l} is the activation in the jth neuron in the Ith layer.
- z_{j}^{l} is the weighted input to the jth neuron in the Ith layer.

Cost function from the network

Backpropagation and stochastic gradient descent

- The goal of the backpropagation algorithm is to compute the gradients $\frac{\partial C}{\partial w}$ and $\frac{\partial C}{\partial b}$ of the cost function C with respect to each and every weight and bias parameters. Note that backpropagation is only used to compute the gradients.

$$
C=\frac{1}{2 n} \sum_{x}\left\|y(x)-a^{L}(x)\right\|^{2}
$$

- Stochastic gradient descent is the training algorithm.

Assumptions on the cost function

1. We assume that the cost function can be written as the average over the cost functions from individual training samples: $C=\frac{1}{n} \sum_{x} C_{x}$. The cost function for the individual training sample is given by $C_{x}=$ $\frac{1}{2}\left|y(x)-a^{L}(x)\right|^{2}$.

- why do we need this assumption? Backpropagation will only allow us to compute the gradients with respect to a single training sample as given by $\frac{\partial C_{x}}{\partial w}$ and $\frac{\partial C_{x}}{\partial b}$. We then recover $\frac{\partial C}{\partial w}$ and $\frac{\partial C}{\partial b}$ by averaging the gradients from the different training samples.

Assumptions on the cost function (continued)

2. We assume that the cost function can be written as a function of the output from the neural network. We assume that the input x and its associated correct labeling $y(x)$ are fixed and treated as constants.

Hadamard product

- Let s and t are two vectors. The Hadamard product is given by:

$$
\begin{gathered}
s \odot t \\
(s \odot t)_{j}=s_{j} t_{j} \\
{\left[\begin{array}{l}
1 \\
2
\end{array}\right] \odot\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 * 3 \\
2 * 4
\end{array}\right]=\left[\begin{array}{l}
3 \\
8
\end{array}\right]}
\end{gathered}
$$

Such elementwise multiplication is also referred to as schur product.

Backpropagation

- Our goal is to compute the partial derivatives $\frac{\partial C}{\partial w_{j k}^{l}}$ and $\frac{\partial C}{\partial b_{j}^{l}}$.
- We compute some intermediate quantities while doing so:

$$
\delta_{j}^{l}=\frac{\partial C}{\partial z_{j}^{l}}
$$

Four equations of the BP (backpropagation)

Summary: the equations of backpropagation

$\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)$
$\delta^{l}=\left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma^{\prime}\left(z^{l}\right)$
$\frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l}$
(BP3)
$\frac{\partial C}{\partial w_{j k}^{l}}=a_{k}^{l-1} \delta_{j}^{l}$
(BP4)

Chain Rule in differentiation

- In order to differentiate a function $\mathrm{z}=f(g(x))$ w.r.t x, we can do the following:

Let $\mathrm{y}=g(x), \quad z=f(y), \frac{d z}{d x}=\frac{d z}{d y} \times \frac{d y}{d x}$

Chain Rule in differentiation (vector case)

Let $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, g maps from \mathbb{R}^{m} to \mathbb{R}^{n}, and f maps from \mathbb{R}^{n} to \mathbb{R}. If $y=g(x)$ and $z=f(y)$, then

$$
\frac{\partial z}{\partial x_{i}}=\sum_{k} \frac{\partial z}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{i}}
$$

Chain Rule in differentiation (computation graph)

$$
\frac{\partial z}{\partial x}=\sum_{\substack{j: x \in \operatorname{Parent}\left(y_{j}\right), y_{j} \in \operatorname{Ancestor}(z)}} \frac{\partial z}{\partial y_{j}} \frac{\partial y_{j}}{\partial x}
$$

BP1

$$
\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)
$$

Here L is the last layer.

$$
\delta^{L}=\frac{\partial C}{\partial z^{L}}, \quad \quad \sigma^{\prime}\left(z^{L}\right)=\frac{\partial\left(\sigma\left(z^{L}\right)\right)}{\partial z^{L}},
$$

$$
\nabla_{a} C=\frac{\partial C}{\partial a^{L}}=\left(\frac{\partial C}{\partial a_{1}^{L}}, \frac{\partial C}{\partial a_{2}^{L}}, \ldots, \frac{\partial C}{\partial a_{n}^{L}}\right)^{T}
$$

Proof:

$$
\begin{aligned}
& \delta_{j}^{L}=\frac{\partial C}{\partial z_{j}^{L}}=\sum_{k} \frac{\partial C}{\partial a_{k}^{L}} \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}}=\frac{\partial C}{\partial a_{j}^{L}} \frac{\partial a_{j}^{L}}{\partial z_{j}^{L}} \text { when } j \neq k, \text { the term } \frac{\partial a_{k}^{L}}{\partial z_{j}^{L}} \text { vanishes. } \\
& \delta_{j}^{L}=\frac{\partial C}{\partial a_{j}^{L}} \sigma^{\prime}\left(z_{j}^{L}\right)
\end{aligned}
$$

Thus we have

$$
\partial^{L}=\frac{\partial C}{\partial a^{L}} \odot \sigma^{\prime}\left(z^{L}\right)
$$

BP2

$$
\partial^{l}=\left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma^{\prime}\left(z^{l}\right)
$$

Proof:

$$
\begin{aligned}
& \delta_{j}^{l}=\frac{\partial C}{\partial z_{j}^{l}}=\sum_{k} \frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}=\sum_{k} \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}} \delta_{k}^{l+1} \\
& z_{k}^{l+1}=\sum_{j} w_{k j}^{l+1} a_{j}^{l}+b_{k}^{l}=\sum_{j} w_{k j}^{l+1} \sigma\left(z_{j}^{l}\right)+b_{k}^{l}
\end{aligned}
$$

By differentiating we have:

$$
\begin{aligned}
& \frac{\partial z_{k}^{l+1}}{\partial z_{j}^{l}}=w_{k j}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right) \\
& \delta_{j}^{l}=\sum_{k} w_{k j}^{l+1} \delta_{k}^{l+1} \sigma^{\prime}\left(z_{j}^{l}\right)
\end{aligned}
$$

BP3

$$
z^{l}=w^{l} a^{l-1}+b^{l}
$$

$$
\frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l}
$$

Proof:

$$
\begin{gathered}
\frac{\partial C}{\partial b_{j}^{l}}=\sum_{k}\left(\frac{\partial C}{\partial z_{k}^{l}} \frac{\partial z_{k}^{l}}{\partial b_{j}^{l}}\right)=\frac{\partial C}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial b_{j}^{l}} \\
=\delta_{j}^{l} \frac{\partial\left(\sum_{k}\left(w_{j k} a_{k}^{l-1}+b_{j}^{l}\right)\right)}{\partial b_{j}} \\
=\delta_{j}^{l}
\end{gathered}
$$

BP4

$$
\frac{\partial C}{\partial w_{j k}^{l}}=a_{k}^{l-1} \delta_{j}^{l}
$$

Proof:

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j k}^{l}}=\sum_{m} \frac{\partial C}{\partial z_{m}^{l}} \frac{\partial z_{m}^{l}}{\partial w_{j k}^{l}} & \\
& =\frac{\partial C}{\partial z_{j}^{l}} \frac{\partial z_{j}^{l}}{\partial w_{j k}} \\
& =\delta_{j}^{l} \frac{\partial\left(\sum_{k} w_{j k}^{l} a_{k}^{l-1}+b_{j}^{l}\right)}{\partial w_{j k}} \\
& =\delta_{j}^{l} a_{k}^{l-1}
\end{aligned}
$$

The backpropagation algorithm

1. Input x : Set the corresponding activation a^{1} for the input layer.
2. Feedforward: For each $l=2,3, \ldots, L$ compute

$$
z^{l}=w^{l} a^{l-1}+b^{l} \text { and } a^{l}=\sigma\left(z^{l}\right)
$$

3. Output error δ^{L} : Compute the vector $\delta^{L}=\nabla_{a} C \odot \sigma^{\prime}\left(z^{L}\right)$.
4. Backpropagate the error: For each $l=L-1, L-2, \ldots, 2$

$$
\text { compute } \delta^{l}=\left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma^{\prime}\left(z^{l}\right)
$$

5. Output: The gradient of the cost function is given by

$$
\frac{\partial C}{\partial w_{j k}^{l}}=a_{k}^{l-1} \delta_{j}^{l} \text { and } \frac{\partial C}{\partial b_{j}^{l}}=\delta_{j}^{l} .
$$

The word "backpropagation" comes from the fact that we compute the error vectors δ_{j}^{l} in the backward direction.

Stochastic gradient descent with BP

1. Input a set of training examples
2. For each training example x : Set the corresponding input activation $a^{x, 1}$, and perform the following steps:

- Feedforward: For each $l=2,3, \ldots, L$ compute

$$
z^{x, l}=w^{l} a^{x, l-1}+b^{l} \text { and } a^{x, l}=\sigma\left(z^{x, l}\right) .
$$

- Output error $\delta^{x, L}$: Compute the vector

$$
\delta^{x, L}=\nabla_{a} C_{x} \odot \sigma^{\prime}\left(z^{x, L}\right) .
$$

- Backpropagate the error: For each
$l=L-1, L-2, \ldots, 2$ compute
$\delta^{x, l}=\left(\left(w^{l+1}\right)^{T} \delta^{x, l+1}\right) \odot \sigma^{\prime}\left(z^{x, l}\right)$.

3. Gradient descent: For each $l=L, L-1, \ldots, 2$ update the weights according to the rule $w^{l} \rightarrow w^{l}-\frac{\eta}{m} \sum_{x} \delta^{x, l}\left(a^{x, l-1}\right)^{T}$, and the biases according to the rule $b^{l} \rightarrow b^{l}-\frac{\eta}{m} \sum_{x} \delta^{x, l}$.

Gradients using finite differences

$$
\frac{\partial C}{\partial w_{j}} \approx \frac{C\left(w+\epsilon e_{j}\right)-C(w)}{\epsilon}
$$

Here ϵ is a small positive number and e_{j} is the unit vector in the jth direction. Conceptually very easy to implement. In order to compute this derivative w.r.t one parameter, we need to do one forward pass - for millions of variables we will have to do millions of forward passes.

- Backpropagation can get all the gradients in just one forward and backward pass - forward and backward passes are roughly equivalent in computations.

The derivatives using finite differences would be a million times slower!!

Backpropagation - the big picture

$$
\Delta C \approx \sum_{m p p \ldots q} \frac{\partial C}{\partial a_{m}^{L}} \frac{\partial a_{m}^{L}}{\partial a_{n}^{L-1}} \frac{\partial a_{n}^{L-1}}{\partial a_{p}^{L-2}} \cdots \frac{\partial a_{q}^{l+1}}{\partial a_{j}^{l}} \frac{\partial a_{j}^{l}}{\partial w_{j k}^{l}} \Delta w_{j k}^{l}
$$

- To compute the total change in C we need to consider all possible paths from the weight to the rnct

$$
\frac{\partial C}{\partial w_{j k}^{l}}=\sum_{m n p \ldots q} \frac{\partial C}{\partial a_{m}^{L}} \frac{\partial a_{m}^{L}}{\partial a_{n}^{L-1}} \frac{\partial a_{n}^{L-1}}{\partial a_{p}^{L-2}} \cdots \frac{\partial a_{q}^{l+1}}{\partial a_{j}^{l}} \frac{\partial a_{j}^{l}}{\partial w_{j k}^{l}}
$$

- We are computing the rate of change of C w.r.t a weight w.
- Every edge between two neurons in the network is associated with a rate factor that is just the ratio of partial derivatives of one neurons activation with respect to another neurons activation.
- The rate factor for a path is just the product of the rate factors of the edges in the path.
- The total change is the sum of the rate factors of all the paths from the weight to the cost.

Thank You

Chain Rule in differentiation (vector case)

Let $x \in \mathbb{R}^{m}, y \in \mathbb{R}^{n}$, g maps from \mathbb{R}^{m} to \mathbb{R}^{n}, and f maps from \mathbb{R}^{n} to \mathbb{R}. If $y=g(x)$ and $z=f(y)$, then

$$
\begin{aligned}
\frac{\partial z}{\partial x_{i}} & =\sum_{k} \frac{\partial z}{\partial y_{k}} \frac{\partial y_{k}}{\partial x_{i}} \\
\nabla_{x} z & =\left(\frac{\partial y}{\partial x}\right)^{T} \nabla_{y} z
\end{aligned}
$$

Here $\left(\frac{\partial y}{\partial x}\right)$ is the $n \times m$ Jacobian matrix of g.

DERIVATIVE RULES

$$
\begin{array}{lll}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) & \frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} & \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} & \\
\frac{d}{d x}(\ln x)=\frac{1}{x} & \frac{d}{d x}(\sinh x)=\cosh x & \frac{d}{d x}(\cosh x)=\sinh x
\end{array}
$$

INTEGRAL RULES

$$
\begin{array}{lll}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1 & \int \sin x d x=-\cos x+c & \int \csc ^{2} x d x=-\cot x+c \\
\int a^{x} d x=\frac{1}{\ln a} a^{x}+c & \int \cos x d x=\sin x+c & \int \sec x \tan x d x=\sec x+c \\
\int \frac{1}{x} d x=\ln |x|+c & \int \sec ^{2} x d x=\tan x+c & \int \csc x \cot x d x=-\csc x+c \\
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+c & \int \sinh x d x=\cosh x+c & \int \cosh x d x=\sinh x+c \\
\int \frac{d x}{1+x^{2}}=\arctan x+c & \\
\int \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec} x+c &
\end{array}
$$

