Belief Propagation

Srikumar Ramalingam
School of Computing
University of Utah

Reference

Most or all slides are adapted from the following paper:

Jonathan S. Yedidia, Message-passing Algorithms for Inference and Optimization: "Belief Propagation" and "Divide and Concur"
http://people.csail.mit.edu/andyd/CIOG papers/yedidia isp preprint princeton.pdf

$$
\text { Please read this paper till section } 7 \text {. }
$$

"Messages" in BP or message passing algorithms.

- A message is what a variable tells its neighbors the cost for it to be in different states.
- Size of a message is same as the number of States the alsociated variable can take.

Min-Sum BP (also max-product BP)

- "Max-product" BP is equivalent to "min-sum" BP.
- The only (completely superficial) difference is that messages and beliefs are represented as probabilities rather than costs.

$$
\begin{gathered}
b_{i}\left(x_{i}\right)=\sum_{a \in N(i)} m_{a \rightarrow i}\left(x_{i}\right) \\
\mid \\
\text { "belief" } \quad \text { "messages" }
\end{gathered}
$$

The belief update rule for the min-sum BP algorithm says that the belief at a variable node is simply the sum of incoming messages from neighboring factor nodes.

Variable-to-factor message update rule

$$
\begin{gathered}
m_{i \rightarrow a}\left(x_{i}\right)=\sum_{b \in N(i) \backslash a} m_{b \rightarrow i}\left(x_{i}\right) \\
m_{i \rightarrow a}\left(x_{i}\right)=b_{i}\left(x_{i}\right)-m_{a \rightarrow i}\left(x_{i}\right)
\end{gathered}
$$

The variable-to-factor message update rule in min-sum BP says that the outgoing (blue) message is the sum of all the incoming (red) messages on edges other than the edge of the outgoing message.

Factor to variable message updating rule

The update rule for a message from factor to a variable depends on the local cost function, and the incoming variable-to-factor messages on other edges.

2 Message updating rules

Outline of Message Passing Algorithms

3. The messages are converted into beliefs, which in BP are generally represented as a cost for each possible state (the red numbers)
> 4. The beliefs are thresholded
> the number inside the variable node), and a termination is checked.

Outline of Message Passing Algorithms

$m_{a \rightarrow i}\left(x_{i}\right)=\min _{X_{a} x_{i}}\left[C_{a}\left(X_{a}\right)+\sum_{j \in N(a) \backslash i} m_{j \rightarrow a}\left(x_{j}\right)\right]$

4. The beliefs are thresholded 4 to their lowest cost (represented by the number inside the variable node), and a termination is checked.

Source: Yedidia

What is the termination condition?

- Check whether the guess or the beliefs have changed from previous iterations
- Check whether maximum number of iterations has been reached.

Hamming Code

Channel Evidence

Codeword bits

Parity Checks
A factor graph for the ($\mathrm{N}=7, \mathrm{k}=4$) Hamming code, which has seven codeword bits, of which the left-most four are information bits, and the last three are parity bits.

Hamming Code

$$
\begin{array}{ll}
C_{1}\left(x_{1}=0\right)=0.0 ; & C_{1}\left(x_{1}=1\right)=3.0 \\
C_{2}\left(x_{2}=0\right)=0.0 ; & C_{2}\left(x_{2}=1\right)=2.0 \\
C_{3}\left(x_{3}=0\right)=0.0 ; & C_{3}\left(x_{2}=1\right)=2.5 \\
C_{4}\left(x_{4}=0\right)=0.0 ; & C_{4}\left(x_{2}=1\right)=5.4 \\
C_{5}\left(x_{5}=0\right)=0.0 ; & C_{5}\left(x_{2}=1\right)=4.0 \\
C_{6}\left(x_{6}=0\right)=0.2 ; & C_{6}\left(x_{2}=1\right)=0.0 \\
C_{7}\left(x_{7}=0\right)=0.7 ; & C_{7}\left(x_{2}=1\right)=0.0
\end{array}
$$

Channel Evidence
$C_{A}\left(x_{1}, x_{2}, x_{3}, x_{5}\right) \quad C_{C}\left(x_{1}, x_{3}, x_{4}, x_{7}\right)$

- 0 or infinity for parity check costs

Factor Graphs (Using Energy or Cost functions)

x_{3}	x_{4}	C_{c}
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Factor Graphs (Using Energy or Cost functions)

x_{3}	x_{4}	C_{c}
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Factor Graphs (Using Energy or Cost functions)

x_{3}	x_{4}	C_{c}
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Factor Graphs (Using Energy or Cost functions)

x_{3}	x_{4}	C_{c}
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Factor Graphs (Using Energy or Cost functions)

x_{3}	x_{4}	C_{c}
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Factor Graphs (Using Energy or Cost functions)

x_{3}	x_{4}	C_{c}
0	0	0.4
0	1	1.9
0	2	0.2
1	0	4.9
1	1	0.3
1	2	2.4

Problem 1

(1) (1)
(1) $m_{1 \rightarrow a}=\binom{0}{0} m_{2 \rightarrow a}=\binom{0}{0}$
(2)

$$
\begin{aligned}
& m_{a \rightarrow 1}=\left[\begin{array}{l}
\left.\min _{x_{2}}\left(c_{a}\left(0, x_{2}\right)+m_{2 \rightarrow a}\left(x_{2}\right)\right)\right]=\left(\begin{array}{l}
0.2 \\
\min _{2}\left[c_{a}\left(1, x_{2}\right)+m_{2 \rightarrow a}\left(x_{2}\right)\right)
\end{array}\right]\left[\begin{array}{l}
0.1
\end{array}\right) \\
m_{a \rightarrow 2}=\left[\begin{array}{l}
x_{2} \\
\min _{x_{1}}\left(c_{a}\left(x_{1}, 0\right)+m_{1 \rightarrow a}\left(x_{1}\right)\right) \\
\min _{x_{1}}\left(c_{a}\left(x_{1}, 1\right)+m_{1 \rightarrow a}\left(x_{1}\right)\right)
\end{array}\right]=\binom{0.3}{0.1}
\end{array} .=\begin{array}{l}
\text { and }
\end{array}\right)
\end{aligned}
$$

(3) $b_{1}=\binom{0.2}{0.1} \quad b_{2}=\binom{0.3}{0.1}$
(4) $\begin{array}{ll}x_{1} \longleftarrow 1 & x_{2} \longleftarrow 1\end{array}$
(5) $m_{1 \rightarrow a}=\binom{0}{0} \quad m_{2 \rightarrow a}=\binom{0}{0}$
(6) Same as Step 2 .
(7) $b_{1}=\left(\begin{array}{ll}0 . & 2 \\ 0 . & 1\end{array}\right) \quad b_{2}=\binom{0.3}{0.1}$
(8) $x_{1} \longleftarrow 1, x_{2} \longleftarrow 1$

The state alsignments have not changed from Step (b). So terminate.

Geal: State assignment

$$
\begin{aligned}
& x_{1}, x_{2} \in\{0,1\} \\
& x_{1}, x_{2}=\underset{x_{1}, x_{2}}{\operatorname{argmin}}\left[C_{a}\left(x_{1}, x_{2}\right)+C_{6}\left(x_{2}\right)\right]
\end{aligned}
$$

$B P:$
(1) $m_{1 \rightarrow a}=\binom{0}{0} \quad m_{2 \rightarrow a}=\binom{0}{0} m_{2 \rightarrow t}=\binom{0}{0}$
(3) m

$$
\begin{aligned}
& m_{a \rightarrow 1}=\left[\min _{\left.\min _{2}\left[c_{a}\left(0, x_{2}\right)+m_{2 \rightarrow a}\left(x_{2}\right)\right)\right]}^{\left.\left.\min _{\min _{2}}\left[c_{a}\left(1, x_{2}\right)+m_{2 \rightarrow a}\left(x_{2}\right)\right)\right]=\binom{0.2}{0.1}\right]}\right. \\
& m_{a \rightarrow 2}=\left[\begin{array}{l}
\left.m_{x_{2}}\left[C_{a}\left(x_{1}, 0\right)+m_{1 \rightarrow a}\left(x_{1}\right)\right\}\right] \\
\min _{x_{1}}\left[C_{a}\left(x_{1}, 1\right)+m_{1 \rightarrow a}\left(x_{1}\right)\right]
\end{array}\right]=\binom{0.3}{0.1} \\
& m_{b \rightarrow 2}=\left[\begin{array}{l}
\min C_{f}(0) \\
\min C_{f}(1)
\end{array}\right]=\left[\begin{array}{l}
0.1 \\
0.6
\end{array}\right]
\end{aligned}
$$

(3) $b_{1}=\binom{0.2}{0.1} \quad t_{2}=\binom{0.3}{0.1}+\binom{0.1}{0.6}=\binom{0.4}{0.7}$
(4) $x_{1} \leftarrow 1, x_{2} \leftarrow 0$
(5) $m_{1 \rightarrow a}=\binom{0}{0}, m_{2 \rightarrow a}=\binom{0.1}{0 . b}, m_{2 \rightarrow t}=\binom{0.3}{0.1}$
(6)

$$
\text { (6) } M_{a \rightarrow 1}=\left[\begin{array}{l}
\left.\min _{x_{2}}\left(C_{a}\left(0, x_{2}\right)+m_{2 \rightarrow a}\left(x_{2}\right)\right)\right] \\
\min _{x_{2}}\left(C_{a}\left(1, x_{2}\right)+m_{2 \rightarrow a}\left(x_{2}\right)\right)
\end{array}\right]=\binom{0.3}{0.5}
$$

$$
m_{a \rightarrow 2}=\left[\begin{array}{l}
\left.\min _{x_{1}}\left(c_{a}\left(x_{1}, 0\right)+m_{1 \rightarrow 2}\left(x_{1}\right)\right)\right] \\
m_{x_{1}}\left(c_{a}\left(x_{1}, 1\right)+m_{1 \rightarrow a}\left(x_{1}\right)\right)
\end{array}\right]=\binom{0-3}{0.1}
$$

$$
m_{t \rightarrow 2}=\left[\begin{array}{l}
0.1 \\
0.6
\end{array}\right]
$$

(7) $b_{1}=\binom{0.3}{0.5} \quad b_{2}=\binom{0.4}{0.7}$
(8) $x_{1} \longleftarrow 0, \quad x_{2} \longleftarrow 0$
(9) $m_{1 \rightarrow a}=\binom{0}{0} \quad m_{2 \rightarrow a}=\binom{0.1}{0.6} m_{2 \rightarrow t}=\binom{0.3}{0.11}$ $\xrightarrow{\longrightarrow}$ Same as (5)
(10) Same as step (6)
(11) Same as ltep (7)
(18) $x_{1} \leftarrow 0, x_{2} \longleftarrow 0$

Terminate

