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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!
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Lab 3 Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
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Lab 3 Recap: Tackling Harnessing Roadblocks
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￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!
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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check! 
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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check! 
￭ Not a silver bullet—may cover different functions!
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Trial-and-error 
harness refinement!

Lab 3 Recap: Tackling Harnessing Roadblocks
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Recap: Project Schedule

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results
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Questions?
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Fuzzing Faster
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(new code)
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Crashes
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Recap: Coverage-guided Fuzzing

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)
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Recap: Coverage-guided Fuzzing

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)

total execs : 3202
exec speed  : 10.7/sec (slow!)



Stefan Nagy

What affects fuzzing speed?

￭ Process execution
￭ Performed on every input

￭ Runtime instrumentation
￭ Code coverage tracing

￭ Information post-processing
￭ Data structure writing/reading
￭ Other essential computation
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Why is speed so important?

￭ Need to find the bugs before attackers do
￭ Time is money; bug-finders limited by time/resource budgets
￭ Race to find and fix before monthly “Patch Tuesday”

￭ People’s privacy (and lives) at stake
￭ Nation-state attackers have unlimited budgets
￭ They’re in it to win it just as much
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Complexity adds Overhead

￭ Fancy/slow is often less effective than crude/fast
￭ E.g., taint tracking-based fuzzing vs. good ol’ AFL
￭ Academically interesting is not always practical
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Source: GREYONE: Data Flow Sensitive Fuzzing
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Pre-execution Optimization
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Test Case Minimization

￭ Test cases get larger as fuzzing continues
￭ More program execution = more overhead 
￭ Need to cut-out unnecessary execution

￭ Delta debugging: change, then check
￭ Iteratively remove input bytes
￭ Check if code coverage changes

￭ If coverage changes, undo
￭ Like one big jenga game
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Corpus Minimization

￭ Test case corpus grows as fuzzing continues
￭ Lots of test cases reach new edge, hit count coverage
￭ Many test cases have overlapping code coverage
￭ Fuzzer will struggle to pick the “best” one 

￭ Corpus minimization: condense your corpus
￭ I.e., smallest set that covers all edges seen so far
￭ AFL: also minimize file size and execution time
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Source: https://securityboulevard.com/2021/10/generating-a-tiny-corpus-with-greedy-set-cover-minimization/
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Trade-offs

￭ Complicated for highly-structured inputs
￭ E.g., JPEG images versus ELF executables
￭ Byte-level changes won’t work on the latter
￭ Grammar-level mutations require more machinery

￭ Complicated by code coverage granularity
￭ E.g., edges versus hit counts
￭ Finer-grained info is harder to condense
￭ Still an unsolved research problem
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Post-execution Optimization
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Storing Information

￭ Must store information in data structures
￭ E.g., bitmaps for code coverage traces
￭ E.g., ASTs for dynamically-learned grammars

￭ Data structure design affects fuzzing speed
￭ Memory footprint
￭ Cost of reads/writes
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bitmap
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Trade-offs

￭ Best case: small enough to fit in L2 cache
￭ But, smaller size sacrifices information storage
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Source: BigMap: Future-proofing Fuzzers with Efficient Large Maps
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Intra-execution Optimization
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Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
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cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;
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Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time
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Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
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Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
￭ Edge-specific hit counter incremented by one for each exercising
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Recap: AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
￭ Edge-specific hit counter incremented by one for each exercising

￭ Right shift current block to preserve edge directionality (because XOR is commutative)
￭ Enables A→B to be seen as distinct from B→A; also A→A from B→B
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cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;
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Instrumenters: How Instrumentation is Added
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Compiler

Binary (static)

Binary (dynamic)
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￭ Open-source: compiler instrumentation
￭ Bake-in instrumentation code at compile-time
￭ Efficient and correct

￭ Closed-source: dynamic binary translation
￭ Instrument program as it is executing
￭ Generally correct but inefficient

￭ Closed-source: static binary rewriting
￭ Instrument program before it executes
￭ Generally incorrect but efficient 

29
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￭ Open-source: compiler instrumentation
￭ Bake-in instrumentation code at compile-time
￭ Efficient and correct

￭ Closed-source: dynamic binary translation
￭ Instrument program as it is executing
￭ Generally correct but inefficient

￭ Closed-source: static binary rewriting
￭ Instrument program before it executes
￭ Generally incorrect but efficient 
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Use less instrumentation

Use faster instrumentation

Key pillars of fuzzing 
instrumentation speed:

Instrumenters: How Instrumentation is Added
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Faster Instrumentation
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Binary Instrumentation

32

Running 
Program

B1

B2

B3

B4

Execution

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA
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Running 
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B2

B3

B4
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(e.g., x86→ARM)

B1

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

Binary Instrumentation
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Binary Instrumentation

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA
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Binary Instrumentation
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￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA
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Binary Instrumentation

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

￭ Primary expense comes from translation 
￭ Performed on every piece of code
￭ Re-translate already seen code

36
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Binary Instrumentation

￭ Dynamic binary translation
￭ Idea: translate basic blocks to host ISA

￭ Primary expense comes from translation 
￭ Performed on every piece of code
￭ Re-translate already seen code

￭ Solution: make already-seen code cached
￭ Avoid re-translating as much as possible

￭ Problem: still really slow even with caching!
￭ Upwards of 600% slower than compilers!
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Faster Binary Instrumentation

￭ Our solution (ZAFL): design static rewriters to match compilers
￭ Achieves compiler-level speeds for closed-source targets
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Dynamic Binary Translation Static Binary Rewriting

￭ Perform all tasks prior to runtime
￭ Analogous to compiler (e.g., LLVM IR)

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Decode 
& Lift

Instrument & Optimize IR Code 
Gen.

￭ Analyze / instrument during runtime
￭ Repeatedly pay translation cost

ZAFL’s Design Decisions
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Trampolined Invocation

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
call payload
pop rbp
ret

payload:
  mov ecx, _prev
  xor ecx, edi
  shr edi 
  mov _prev, edi
  ret

Trace

Return

Original
Instrumentation

Inlined Invocation

￭ Weave new instructions with original
￭ Preferred mechanism of compilers

￭ Transfer to / from “payload” function
￭ Repeatedly pay flow redirection cost

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi 
mov _prev, edi
pop rbp
ret

Trace

Original Instrumented

ZAFL’s Design Decisions
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Liveness Unaware Liveness Aware

￭ Track liveness to prioritize dead regs
￭ Critical to compiler code optimization

￭ Transfer to / from “payload” function
￭ Repeatedly pay flow redirection cost

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi 
mov _prev, edi
pop rbp
ret

Trace

Original Instrumented
push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
push edi
push ecx
mov edi, 7
mov ecx, _prev
xor ecx, edi
shr edi 
mov _prev, edi
pop ecx
pop edi
pop rbp
ret

Restore Regs

Save Regs

push rbp
mov rbp, rsp
mov edi, 0x100
call puts
mov eax, 0
pop rbp
ret

Original
Instrumented

ZAFL’s Design Decisions
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￭ Our solution (ZAFL): design static rewriters to match compilers
￭ Achieves compiler-level speeds for closed-source targets

￭ Finds vulnerabilities faster than other binary tracers

42

unrar
Vulnerability Type Executable Dyninst QEMU ZAFL

Heap Overflow nconvert Can’t find 18.3 hrs 12.7 hrs
Heap Overflow unrar Can’t find 12.3 hrs 9.04 hrs
Use-After-Free pngout 12.6 hrs 6.26 hrs 1.93 hrs
Use-After-Free pngout 9.35 hrs 4.67 hrs 1.44 hrs
Heap Overflow IDA Pro 23.7 hrs Can’t find 2.30 hrs

ZAFL’s Mean Relative Decrease -660% -113%

ZAFL’s Performance
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Hardware-assisted Tracing

￭ Collect coverage via fast CPU mechanisms
￭ E.g., Intel Processor Trace, ARM Coresight
￭ An emerging feature used in binary fuzzing

￭ Trade-offs: 
￭ Attains speeds similar to compiler instrumentation
￭ Only usable (and effective) on specific hardware

￭ ARM Coresight is way slower than Intel PT
￭ Cannot instrument programs to do other things

￭ E.g., hooking and logging CMP instructions
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Less Instrumentation
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Instrumentation Culling

￭ Save overhead by instrumenting less of the program
￭ Crude approach: instrument code at random
￭ Smart approach: instrument leaf nodes of dominator tree 

￭ A dominates B iff every path to B first intersects A
￭ Cuts down about 30–50% of basic blocks 
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Instrumentation Optimization

￭ Downgrade from edge to block-based instrumentation
￭ Save a few instructions (i.e., from computing edge hashes)
￭ Saved for basic blocks with single predecessors 
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cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Shared_mem [PreDeterminedIID]++;
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Why trace every single test case?

￭ Equivalent to checking each straw to find one needle
￭ Cost adds up from instrumentation’s instruction footprint

￭ 3–5 additional instructions per basic block 
￭ More instructions from post-processing coverage
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Why trace every single test case?

￭ Less than 1% of all inputs reach new code coverage
￭ The other 99.9% are discarded right after tracing
￭ Wasted resources!
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Coverage-guided Tracing

￭ Idea: restrict tracing to only when new coverage is guaranteed
￭ Guaranteed how? By using interrupts!

49
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Coverage-guided Tracing

￭ Idea: restrict tracing to only when new coverage is guaranteed
￭ Guaranteed how? By using interrupts!
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interruptC
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Hit interrupt: 
perform full trace & 

remove all interrupts
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Coverage-guided Tracing

￭ Idea: restrict tracing to only when new coverage is guaranteed
￭ Guaranteed how? By using interrupts!

51

No interrupt hit = 
no new coverage

Interrupts 
cleared

Basic block 
interruptC

A
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Hit interrupt: 
perform full trace & 

remove all interrupts
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Coverage-guided Tracing

￭ Implementation: UnTracer
￭ Averages just 0.3% overhead

￭ Coverage-guided fuzzing at the 
speed of black-box fuzzing

￭ Caveats?
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Coverage-guided Tracing

￭ Implementation: UnTracer
￭ Averages just 0.3% overhead

￭ Coverage-guided fuzzing at the 
speed of black-box fuzzing

￭ Caveats?
￭ Only basic block coverage
￭ No edges or hit counts!
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Questions?

54


