
Stefan Nagy

Week 8: Lecture A
Fuzzing Science
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Monday, February 26, 2024
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Recap: Key Dates
￭ Feb. 26 Sign up final project team

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations
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cs.utah.edu/~snagy/courses/cs5963/schedule



Stefan Nagy

￭ Assignment: write your own AFL-friendly harness for libArchive
￭ Read its documentation in: https://linux.die.net/man/3/libarchive 
￭ https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc 

￭ Create a harness that reads data from files
￭ What functions did you try? 
￭ What worked and what didn’t?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)
￭ Submit your harness code in your report 
￭ Free to team up (max 3 students per group)
￭ Submit one report per group

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!
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Recap: Lab 3 Overview

https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc
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Recap: Lab 3 Tips

￭ Read libArchive’s documentation and get inspiration from others’ code
￭ Understand the libArchive manpages
￭ Look at how others (e.g., non-fuzzing projects) use its API

￭ Validate your results
￭ Measure code coverage of the libArchive codebase
￭ Look for increasing code coverage over time

￭ Deadline: Wednesday, February 28th by 11:59PM
￭ Group assignment (up to 3 members)
￭ Look for teammates in-class and on Piazza
￭ See cs.utah.edu/~snagy/courses/cs5963/assignments.html
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https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html
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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
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Recap: Tackling Harnessing Roadblocks
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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!
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Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
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Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!
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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check! 
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Recap: Tackling Harnessing Roadblocks
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￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check! 
￭ Not a silver bullet—may cover different functions!
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Trial-and-error 
harness refinement!

Recap: Tackling Harnessing Roadblocks
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Recap: Project Schedule

￭ Monday, Feb 26th: team signup due

￭ Wednesday, Feb. 28th: proposal day
￭ Instructions: a 5-minute presentation that 

motivates your project
￭ Goal: practice the art of “the pitch”

￭ Get feedback from your peers
￭ Follow Heilmeier’s Catechism!

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results
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Recap: Project Team Signup

￭ Signup sheet available on course website (must use UofU gcloud account)
￭ Fill-in your project title and teammate names by 11:59PM on Monday, February 26th
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Recap: Project Team Signup

￭ Signup sheet available on course website (must use UofU gcloud account)
￭ Fill-in your project title and teammate names by 11:59PM on Monday, February 26th
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Need help finalizing your project idea? 
Come chat with me in office hours!
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Questions?
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Fuzzing Science
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Why evaluate fuzzers?

￭ Advance science
￭ “I must publish to graduate”

￭ Validate your technique
￭ “My fix really does work!”

￭ Convince others your fuzzer is best
￭ “I made the best fuzzer for Microswat Superclick!”
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How should fuzzers be evaluated?

￭ Pick a few benchmarks

￭ Compare against AFL

￭ Run a few trials

￭ Compute average coverage
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How should fuzzers be evaluated?

￭ Pick a few benchmarks

￭ Compare against AFL

￭ Run a few trials

￭ Compute average coverage
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WRONG
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Fuzzer evaluations must be scientific
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Fuzzer evaluations must be scientific
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Benchmark Selection
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Benchmark Selection

￭ Size matters
￭ File size 

￭ Megabytes
￭ Complexity

￭ Basic blocks
￭ Proxy for # of paths
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Benchmark Selection

￭ Size matters
￭ File size 

￭ Megabytes
￭ Complexity

￭ Basic blocks
￭ Proxy for # of paths
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Benchmark Selection

￭ Size matters
￭ File size 

￭ Megabytes
￭ Complexity

￭ Basic blocks
￭ Proxy for # of paths

￭ Results tell all
￭ Ideally good on all sizes
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Benchmark Selection

￭ Maximize variety
￭ Program type

￭ Image parser
￭ Document reader
￭ Audio file converter

￭ Program input format 
￭ JPEG, GIF, EXIF
￭ PDF, DOC, XML
￭ MP3, WAV, OGG

￭ Parent library / application
￭ ImageMagick
￭ Binutils
￭ RARLab
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Benchmark Selection

￭ Cardinal sins of benchmark selection
￭ Fuzzing programs of a single type, format

￭ E.g., PDF parsers
￭ Fuzzing programs from a single package

￭ E.g., Binutils, Coreutils
￭ Happens far too often

￭ Results should be generalizable
￭ If not, then explain why
￭ If not justified, then reject
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Other Benchmark Selection Sins

￭ Developing a binary-only approach
￭ But only evaluating open-source programs
￭ Finding closed-source benchmarks is hard!
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Other Benchmark Selection Sins

￭ Developing a binary-only approach
￭ But only evaluating open-source programs
￭ Finding closed-source benchmarks is hard!

29



Stefan Nagy

Other Benchmark Selection Sins

￭ Relying on synthetic benchmark corpora 
￭ E.g., SPEC2000, LAVA-M
￭ Often limited in their semantics

￭ LAVA-M: only magic-byte bugs
￭ Many reviewers hate this

￭ I am more forgiving
￭ Best served as a “preliminary” data point
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Competitor Selection
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Choosing worthy competitors…

￭ Many different fuzzers today
￭ Random fuzzing
￭ Grammar fuzzing
￭ Token-level fuzzing
￭ Rare branch targeting
￭ Invariant-guided fuzzing
￭ Sub-instruction profiling
￭ …
￭ Which should you choose?
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Choose the state of the art!

￭ Pick the best conventional fuzzers
￭ E.g., AFL, AFL++, libFuzzer

￭ Include the latest and greatest fuzzers
￭ Are you building a better grammar fuzzer?

￭ Compare to other grammar fuzzers!
￭ E.g., Gramatron, Nautilus

￭ Are you building a fast binary instrumenter?
￭ Compare other binary instrumenters!
￭ E.g., ZAFL, AFL-QEMU, AFL-Dyninst

￭ Up to you to stay up to date on the literature
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Implementation differences matter!

￭ Build your fuzzer off a common platform
￭ AFL is today’s most popular platform

￭ Most fuzzers derived from AFL
￭ Every change matters

￭ E.g., speed, queue strategy, mutation

￭ Leave core fuzzer design as a control
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Ablation Studies

￭ Did you implement a ton of new features?
￭ Lots of levers to pull, knobs to twist
￭ E.g., coverage granularity, execution timeout

￭ Compare results with & without each
￭ Ablation studies make for better science

￭ Is an idea the sum of its parts?
￭ Or is one feature most critical?

￭ Better yet: publish one key idea at a time
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Cardinal sins of competitor selection…

￭ Choosing old, obsolete fuzzers
￭ Contribution sold as better than it is
￭ Automatic reject!

￭ Omitting relevant state-of-the-art
￭ Usually a major revision
￭ Reevaluate with what reviewers want
￭ Reviewers need to know what to suggest

￭ Throwing five things at the wall
￭ Many of these papers get accepted as-is
￭ Bad science; we need ablation studies!
￭ Paper must be carefully read and dissected
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Experiment Setup
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Seed Selection Matters
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Source: Evaluating Fuzz Testing
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Seed Selection Matters
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Source: Evaluating Fuzz Testing
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Trial Duration

￭ Early plateaus can be misleading
￭ Look for sustained plateaus

￭ Likewise, high coverage early on can be misleading
￭ Want to see sustained growth over time
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Fuzzing Time

Edges 

Covered
2 hr 10 hr
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Trial Duration
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Source: Evaluating Fuzz Testing
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Recommended Setup

￭ Seeds of varying contents
￭ E.g., empty, well-formed, etc.

￭ Trial length of 24+ hours
￭ The bare minimum
￭ Longer is better

￭ At least 5 trials per benchmark
￭ One trial is not representative
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Ensuring Fairness

￭ Maintain same setup across all fuzzers
￭ Same seeds, number of trials, duration, etc.
￭ If a trial fails, re-run until all 5 trials completed

￭ Begin fuzzers at same starting time
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“Training” Time

Edges 

Covered

2 hr

Experiment Start
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Experiment Procedure
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Results Processing

￭ What metrics do we value most?
￭ Code coverage

￭ Easy to measure
￭ Bugs and vulnerabilities found

￭ Hard to measure
￭ Zero-day vulnerabilities found

￭ A long time to produce
￭ Bad reviewers ask for this

￭ Project-specific metrics
￭ Results that prove a point or back up a claim
￭ E.g., queue size, time spent on execution, etc.
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Bugs and Vulnerabilities

￭ Finding brand-new bugs is challenging
￭ Many common fuzzing targets are well-fuzzed
￭ Looks bad to pick random, unknown programs

￭ Synthetic bug benchmark corpora
￭ E.g., Magma, LAVA-M

￭ Various caveats (e.g., realism)

￭ Known bugs in older program versions
￭ E.g., fuzzing TCPDump 4.9.1
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Bug-finding Metrics

￭ Number of bugs found
￭ Proxy for general bug-finding ability
￭ Don’t just report AFL’s “unique crashes”—you must deduplicate them!

￭ Time-to-exposure on known bugs
￭ Helpful—especially if your focus is on accelerating fuzzing speed
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Zero-day Vulnerabilities

￭ Requires you to triage and report bugs
￭ You must fuzz the program’s latest version
￭ Follow responsible disclosure practices
￭ Let developer request a CVE identifier
￭ See “Bugs & Triage II” lecture from class

￭ “You didn’t find new bugs… REJECT!”
￭ A terrible trend in academic fuzzing
￭ Happening less (from what I can tell)
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Summary Statistics

￭ Are your results statistically significant?
￭ Arithmetic mean doesn’t tell the story

￭ Too coarse-grained of a comparison

￭ The Mann-Whitney U test
￭ p-value above 0.05 = not statistically significant

￭ Your 2x improvement doesn’t matter
￭ p-value less than 0.05 = statistically significant

￭ Great job!
￭ The gold standard of fuzzing evaluations today
￭ Other: Vargha and Delaney’s A-12 test

￭ “Magnitude” of an improvement
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Statistical Significance
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Base A B C

Base

A 2.58e-26 0.0022 6.96e-5

B 5.72e-23 0.194

C 5.61e-22
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Statistical Significance
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Stefan Nagy

Questions?
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