
Stefan Nagy

Week 8: Lecture A
Fuzzing Science

1

Monday, February 26, 2024



Stefan Nagy

Recap: Key Dates
￭ Feb. 26 Sign up final project team

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule



Stefan Nagy

￭ Assignment: write your own AFL-friendly harness for libArchive
￭ Read its documentation in: https://linux.die.net/man/3/libarchive 
￭ https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc 

￭ Create a harness that reads data from files
￭ What functions did you try? 
￭ What worked and what didn’t?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)
￭ Submit your harness code in your report 
￭ Free to team up (max 3 students per group)
￭ Submit one report per group

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

3

Recap: Lab 3 Overview

https://linux.die.net/man/3/libarchive
https://github.com/google/oss-fuzz/blob/master/projects/libarchive/libarchive_fuzzer.cc


Stefan Nagy

Recap: Lab 3 Tips

￭ Read libArchive’s documentation and get inspiration from others’ code
￭ Understand the libArchive manpages
￭ Look at how others (e.g., non-fuzzing projects) use its API

￭ Validate your results
￭ Measure code coverage of the libArchive codebase
￭ Look for increasing code coverage over time

￭ Deadline: Wednesday, February 28th by 11:59PM
￭ Group assignment (up to 3 members)
￭ Look for teammates in-class and on Piazza
￭ See cs.utah.edu/~snagy/courses/cs5963/assignments.html

4

https://www.cs.utah.edu/~snagy/courses/cs5963/assignments.html


Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!

5

Recap: Tackling Harnessing Roadblocks



Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

6

Recap: Tackling Harnessing Roadblocks



Stefan Nagy

Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?

7



Stefan Nagy

Recap: Tackling Harnessing Roadblocks

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

8



Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check! 

9

Recap: Tackling Harnessing Roadblocks



Stefan Nagy

￭ No increase in coverage…
￭ AFL’s “new edges on” counter stays stagnant
￭ Are you sure that you instrumented the library?
￭ If not, you will only get coverage of the harness!
￭ Trouble compiling / linking? Can just use QEMU!

￭ New coverage, but zero crashes…
￭ Is your harness calling interesting functionality?
￭ If so, can you verify that it is calling it correctly?
￭ Are you fuzzing for a long enough time?
￭ You can try older API versions with known bugs!

￭ Lots crashes in very little time…
￭ Are they reproducible with any available oracles?
￭ Re-run input with bsdtar application and check! 
￭ Not a silver bullet—may cover different functions!

10

Trial-and-error 
harness refinement!

Recap: Tackling Harnessing Roadblocks



Stefan Nagy

Recap: Project Schedule

￭ Monday, Feb 26th: team signup due

￭ Wednesday, Feb. 28th: proposal day
￭ Instructions: a 5-minute presentation that 

motivates your project
￭ Goal: practice the art of “the pitch”

￭ Get feedback from your peers
￭ Follow Heilmeier’s Catechism!

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results

11



Stefan Nagy

Recap: Project Team Signup

￭ Signup sheet available on course website (must use UofU gcloud account)
￭ Fill-in your project title and teammate names by 11:59PM on Monday, February 26th

12



Stefan Nagy

Recap: Project Team Signup

￭ Signup sheet available on course website (must use UofU gcloud account)
￭ Fill-in your project title and teammate names by 11:59PM on Monday, February 26th

13

Need help finalizing your project idea? 
Come chat with me in office hours!



Stefan Nagy

Questions?

14



Stefan Nagy

Fuzzing Science

15



Stefan Nagy

Why evaluate fuzzers?

￭ Advance science
￭ “I must publish to graduate”

￭ Validate your technique
￭ “My fix really does work!”

￭ Convince others your fuzzer is best
￭ “I made the best fuzzer for Microswat Superclick!”

16



Stefan Nagy

How should fuzzers be evaluated?

￭ Pick a few benchmarks

￭ Compare against AFL

￭ Run a few trials

￭ Compute average coverage

17



Stefan Nagy

How should fuzzers be evaluated?

￭ Pick a few benchmarks

￭ Compare against AFL

￭ Run a few trials

￭ Compute average coverage

18

WRONG



Stefan Nagy

Fuzzer evaluations must be scientific

19



Stefan Nagy

Fuzzer evaluations must be scientific

20



Stefan Nagy

Benchmark Selection

21



Stefan Nagy

Benchmark Selection

￭ Size matters
￭ File size 

￭ Megabytes
￭ Complexity

￭ Basic blocks
￭ Proxy for # of paths

22



Stefan Nagy

Benchmark Selection

￭ Size matters
￭ File size 

￭ Megabytes
￭ Complexity

￭ Basic blocks
￭ Proxy for # of paths

23



Stefan Nagy

Benchmark Selection

￭ Size matters
￭ File size 

￭ Megabytes
￭ Complexity

￭ Basic blocks
￭ Proxy for # of paths

￭ Results tell all
￭ Ideally good on all sizes

24



Stefan Nagy

Benchmark Selection

￭ Maximize variety
￭ Program type

￭ Image parser
￭ Document reader
￭ Audio file converter

￭ Program input format 
￭ JPEG, GIF, EXIF
￭ PDF, DOC, XML
￭ MP3, WAV, OGG

￭ Parent library / application
￭ ImageMagick
￭ Binutils
￭ RARLab

25



Stefan Nagy

Benchmark Selection

￭ Cardinal sins of benchmark selection
￭ Fuzzing programs of a single type, format

￭ E.g., PDF parsers
￭ Fuzzing programs from a single package

￭ E.g., Binutils, Coreutils
￭ Happens far too often

￭ Results should be generalizable
￭ If not, then explain why
￭ If not justified, then reject

26



Stefan Nagy

Other Benchmark Selection Sins

￭ Developing a binary-only approach
￭ But only evaluating open-source programs
￭ Finding closed-source benchmarks is hard!

27



Stefan Nagy

Other Benchmark Selection Sins

￭ Developing a binary-only approach
￭ But only evaluating open-source programs
￭ Finding closed-source benchmarks is hard!

28



Stefan Nagy

Other Benchmark Selection Sins

￭ Developing a binary-only approach
￭ But only evaluating open-source programs
￭ Finding closed-source benchmarks is hard!

29



Stefan Nagy

Other Benchmark Selection Sins

￭ Relying on synthetic benchmark corpora 
￭ E.g., SPEC2000, LAVA-M
￭ Often limited in their semantics

￭ LAVA-M: only magic-byte bugs
￭ Many reviewers hate this

￭ I am more forgiving
￭ Best served as a “preliminary” data point

30



Stefan Nagy

Competitor Selection

31



Stefan Nagy

Choosing worthy competitors…

￭ Many different fuzzers today
￭ Random fuzzing
￭ Grammar fuzzing
￭ Token-level fuzzing
￭ Rare branch targeting
￭ Invariant-guided fuzzing
￭ Sub-instruction profiling
￭ …
￭ Which should you choose?

32



Stefan Nagy

Choose the state of the art!

￭ Pick the best conventional fuzzers
￭ E.g., AFL, AFL++, libFuzzer

￭ Include the latest and greatest fuzzers
￭ Are you building a better grammar fuzzer?

￭ Compare to other grammar fuzzers!
￭ E.g., Gramatron, Nautilus

￭ Are you building a fast binary instrumenter?
￭ Compare other binary instrumenters!
￭ E.g., ZAFL, AFL-QEMU, AFL-Dyninst

￭ Up to you to stay up to date on the literature

33



Stefan Nagy

Implementation differences matter!

￭ Build your fuzzer off a common platform
￭ AFL is today’s most popular platform

￭ Most fuzzers derived from AFL
￭ Every change matters

￭ E.g., speed, queue strategy, mutation

￭ Leave core fuzzer design as a control

34



Stefan Nagy

Ablation Studies

￭ Did you implement a ton of new features?
￭ Lots of levers to pull, knobs to twist
￭ E.g., coverage granularity, execution timeout

￭ Compare results with & without each
￭ Ablation studies make for better science

￭ Is an idea the sum of its parts?
￭ Or is one feature most critical?

￭ Better yet: publish one key idea at a time

35



Stefan Nagy

Cardinal sins of competitor selection…

￭ Choosing old, obsolete fuzzers
￭ Contribution sold as better than it is
￭ Automatic reject!

￭ Omitting relevant state-of-the-art
￭ Usually a major revision
￭ Reevaluate with what reviewers want
￭ Reviewers need to know what to suggest

￭ Throwing five things at the wall
￭ Many of these papers get accepted as-is
￭ Bad science; we need ablation studies!
￭ Paper must be carefully read and dissected

36



Stefan Nagy

Experiment Setup

37



Stefan Nagy

Seed Selection Matters

38

Source: Evaluating Fuzz Testing



Stefan Nagy

Seed Selection Matters

39

Source: Evaluating Fuzz Testing



Stefan Nagy

Trial Duration

￭ Early plateaus can be misleading
￭ Look for sustained plateaus

￭ Likewise, high coverage early on can be misleading
￭ Want to see sustained growth over time

40

Fuzzing Time

Edges 

Covered
2 hr 10 hr



Stefan Nagy

Trial Duration

41

Source: Evaluating Fuzz Testing



Stefan Nagy

Recommended Setup

￭ Seeds of varying contents
￭ E.g., empty, well-formed, etc.

￭ Trial length of 24+ hours
￭ The bare minimum
￭ Longer is better

￭ At least 5 trials per benchmark
￭ One trial is not representative

42



Stefan Nagy

Ensuring Fairness

￭ Maintain same setup across all fuzzers
￭ Same seeds, number of trials, duration, etc.
￭ If a trial fails, re-run until all 5 trials completed

￭ Begin fuzzers at same starting time

43

“Training” Time

Edges 

Covered

2 hr

Experiment Start



Stefan Nagy

Experiment Procedure

44



Stefan Nagy

Results Processing

￭ What metrics do we value most?
￭ Code coverage

￭ Easy to measure
￭ Bugs and vulnerabilities found

￭ Hard to measure
￭ Zero-day vulnerabilities found

￭ A long time to produce
￭ Bad reviewers ask for this

￭ Project-specific metrics
￭ Results that prove a point or back up a claim
￭ E.g., queue size, time spent on execution, etc.

45



Stefan Nagy

Bugs and Vulnerabilities

￭ Finding brand-new bugs is challenging
￭ Many common fuzzing targets are well-fuzzed
￭ Looks bad to pick random, unknown programs

￭ Synthetic bug benchmark corpora
￭ E.g., Magma, LAVA-M

￭ Various caveats (e.g., realism)

￭ Known bugs in older program versions
￭ E.g., fuzzing TCPDump 4.9.1

46



Stefan Nagy

Bug-finding Metrics

￭ Number of bugs found
￭ Proxy for general bug-finding ability
￭ Don’t just report AFL’s “unique crashes”—you must deduplicate them!

￭ Time-to-exposure on known bugs
￭ Helpful—especially if your focus is on accelerating fuzzing speed

47



Stefan Nagy

Zero-day Vulnerabilities

￭ Requires you to triage and report bugs
￭ You must fuzz the program’s latest version
￭ Follow responsible disclosure practices
￭ Let developer request a CVE identifier
￭ See “Bugs & Triage II” lecture from class

￭ “You didn’t find new bugs… REJECT!”
￭ A terrible trend in academic fuzzing
￭ Happening less (from what I can tell)

48



Stefan Nagy

Summary Statistics

￭ Are your results statistically significant?
￭ Arithmetic mean doesn’t tell the story

￭ Too coarse-grained of a comparison

￭ The Mann-Whitney U test
￭ p-value above 0.05 = not statistically significant

￭ Your 2x improvement doesn’t matter
￭ p-value less than 0.05 = statistically significant

￭ Great job!
￭ The gold standard of fuzzing evaluations today
￭ Other: Vargha and Delaney’s A-12 test

￭ “Magnitude” of an improvement

49



Stefan Nagy

Statistical Significance

50

Base A B C

Base

A 2.58e-26 0.0022 6.96e-5

B 5.72e-23 0.194

C 5.61e-22



Stefan Nagy

Statistical Significance

51

Base A B C

Base

A 2.58e-26 0.0022 6.96e-5

B 5.72e-23 0.194

C 5.61e-22



Stefan Nagy

Questions?

52


