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Bugs & Triage I
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Recap: Key Dates
￭ Feb. 05 Lab 2 released

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations
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cs.utah.edu/~snagy/courses/cs5963/schedule
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Questions?
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Fuzzing for Bugs
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Recap: Coverage-guided Fuzzing
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Recap: Software Bugs
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Recap: Software Bugs
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Recap: Finding Bugs with Fuzzing
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Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/
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Before you start: choose your oracle!

￭ Oracles: proxies for triggering software bugs
￭ Can be general-purpose
￭ Can be program-specific
￭ Up to you to decide
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Before you start: choose your oracle!

￭ Oracles: proxies for triggering software bugs
￭ Can be general-purpose
￭ Can be program-specific
￭ Up to you to decide

￭ Common oracles:
￭ Crashes: memory safety bugs
￭ AddressSanitizer: a better memory safety oracle 
￭ Assertion failures: program logic bugs
￭ Differential testing: implementation-specific bugs
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Considerations and Trade-offs

￭ What kind of bugs are you looking for?
￭ Does it require fundamentally new tooling?
￭ E.g., resource exhaustion vs memory corruption 
￭ What are the engineering obstacles? 

￭ At what cost?
￭ High speed is critical for effective fuzzing
￭ E.g., AddressSanitizer adds over 6x overhead
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Memory Corruption Oracles
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Process Memory
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Source: https://courses.cs.washington.edu/courses/cse303/09sp/lectures/2009-04-22/11-heap.pdf
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The Stack

￭ Memory for storing function data
￭ Arguments
￭ Local variables
￭ Return addresses

￭ Allocation the compiler’s job
￭ Deallocation done on function exit

￭ Bounds-checking is programmer’s job
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Stack Corruption
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The Heap

￭ Dynamically-allocated memory
￭ Allocated via malloc(), and freed via free()
￭ Chunks may get allocated, freed, split, coalesced
￭ Regions accessed via pointers

￭ Management is programmer’s job
￭ Pointers must point to live objects
￭ Must point to objects of the right type
￭ Only pointers to functions can be executed
￭ …
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Heap Corruption
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Source: https://courses.cs.washington.edu/courses/cse303/09sp/lectures/2009-04-22/11-heap.pdf
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Crashes as Oracles

￭ Memory corruption messes with program state

￭ Injecting random data may redirect execution
￭ Overwriting a return address on the stack
￭ Overwriting a called function pointer on the heap

￭ Result: garbage operations that crash the program
￭ SIGILL: invalid instruction
￭ SIGSEGV: invalid memory access
￭ SIGFPE: erroneous arithmetic operation
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Where crashes fall short

￭ Not every corruption causes a crash 
￭ Overwriting an unused heap object
￭ Overwriting unused “padding” bytes 
￭ Redirecting to valid instructions
￭ Other weird undefined behavior

￭ A crash-only fuzzing oracle will miss many bugs
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“Better” Oracles
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AddressSanitizer (ASAN)

￭ Key idea: inject poisoned “red zones” before 
and after all memory objects
￭ Force a crash when accessing a red zone
￭ Catch all subtle (non-crashing) corruptions
￭ Implement via instrumentation, custom malloc()
￭ Trade-off: over 6x execution overhead
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UndefinedBehaviorSanitizer (UBSan)

￭ Instrumentation to check 
for undefined behavior
￭ Integer overflows
￭ OOB array indexes
￭ Illegal shift operations
￭ Missing return statements
￭ And many more

￭ Trade-off: more overhead
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SystemSan / ExecSan

￭ Brand-new (Sept. 2022) sanitizer to hunt command injection bugs 
￭ Trace system calls and force crash if seeing weird arguments 
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Assertion Violations

￭ Checks on specific variables
￭ If satisfied, continue
￭ If violated, force crash

￭ Typically added by developer
￭ Or automatically mined

￭ Potential sources:
￭ Pre- and post-conditions
￭ Likely invariants
￭ Input specification
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https://blog.regehr.org/archives/1091
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Differential Testing

￭ Compare multiple implementations of 
the same specification
￭ Divergence = one (or more) are buggy
￭ Compare to a ground-truth implementation
￭ Compare with majority voting

￭ Well-known examples:
￭ C++ compilers (CSmith)
￭ TLS implementations (FrankenCerts)
￭ Interpreters vs. JIT compilers (JIT-Picking)
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The best oracles are ones that reveal bugs 
that you could not find before.
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A note on oracles…
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Questions?
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Lab 2
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Lab 2: Crash Triage

￭ Assignment: learn how to use AddressSanitizer (ASAN)
￭ Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html 

￭ Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
￭ Collect information on each crash
￭ What do you observe?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!
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https://clang.llvm.org/docs/AddressSanitizer.html
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Lab 2 Tips

￭ Re-run crashes on the ASAN instrumented binary
￭ Use Python to script collection of ASAN outputs
￭ Do string post-processing to collect error types, crashing source line, etc.
￭ Group and deduplicate crashes as you see fit

￭ Didn’t find any crashes in Lab 1? 
￭ Try fuzzing fuzzgoat from https://github.com/fuzzstati0n/fuzzgoat 
￭ Should yield lots of crashes quickly
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https://github.com/fuzzstati0n/fuzzgoat
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Questions?
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