
Stefan Nagy

Week 5: Lecture A
Bugs & Triage I

1

Monday, February 5, 2024



Stefan Nagy

Recap: Key Dates
￭ Feb. 05 Lab 2 released

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

2

cs.utah.edu/~snagy/courses/cs5963/schedule



Stefan Nagy

Questions?

3



Stefan Nagy

Fuzzing for Bugs

4



Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

5

(new code)

(no new code)

Execute and 
Collect Feedback

 

(e.g., code coverage)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing



Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

6

(new code)

(no new code)

Recap: Coverage-guided Fuzzing

Inputs

Execute and 
Collect Feedback

 

(e.g., code coverage)

Crashes

(SEGFAULT)



Stefan Nagy

Recap: Software Bugs

7



Stefan Nagy

Recap: Software Bugs

8



Stefan Nagy

Recap: Finding Bugs with Fuzzing

9

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/



Stefan Nagy

Before you start: choose your oracle!

￭ Oracles: proxies for triggering software bugs
￭ Can be general-purpose
￭ Can be program-specific
￭ Up to you to decide

10



Stefan Nagy

Before you start: choose your oracle!

￭ Oracles: proxies for triggering software bugs
￭ Can be general-purpose
￭ Can be program-specific
￭ Up to you to decide

￭ Common oracles:
￭ Crashes: memory safety bugs
￭ AddressSanitizer: a better memory safety oracle 
￭ Assertion failures: program logic bugs
￭ Differential testing: implementation-specific bugs

11



Stefan Nagy

Considerations and Trade-offs

￭ What kind of bugs are you looking for?
￭ Does it require fundamentally new tooling?
￭ E.g., resource exhaustion vs memory corruption 
￭ What are the engineering obstacles? 

￭ At what cost?
￭ High speed is critical for effective fuzzing
￭ E.g., AddressSanitizer adds over 6x overhead

12



Stefan Nagy

Memory Corruption Oracles

13



Stefan Nagy

Process Memory

14

Source: https://courses.cs.washington.edu/courses/cse303/09sp/lectures/2009-04-22/11-heap.pdf



Stefan Nagy

The Stack

￭ Memory for storing function data
￭ Arguments
￭ Local variables
￭ Return addresses

￭ Allocation the compiler’s job
￭ Deallocation done on function exit

￭ Bounds-checking is programmer’s job

15



Stefan Nagy

Stack Corruption

16



Stefan Nagy

The Heap

￭ Dynamically-allocated memory
￭ Allocated via malloc(), and freed via free()
￭ Chunks may get allocated, freed, split, coalesced
￭ Regions accessed via pointers

￭ Management is programmer’s job
￭ Pointers must point to live objects
￭ Must point to objects of the right type
￭ Only pointers to functions can be executed
￭ …

17



Stefan Nagy

Heap Corruption

18

Source: https://courses.cs.washington.edu/courses/cse303/09sp/lectures/2009-04-22/11-heap.pdf



Stefan Nagy

Crashes as Oracles

￭ Memory corruption messes with program state

￭ Injecting random data may redirect execution
￭ Overwriting a return address on the stack
￭ Overwriting a called function pointer on the heap

￭ Result: garbage operations that crash the program
￭ SIGILL: invalid instruction
￭ SIGSEGV: invalid memory access
￭ SIGFPE: erroneous arithmetic operation

19



Stefan Nagy

Where crashes fall short

￭ Not every corruption causes a crash 
￭ Overwriting an unused heap object
￭ Overwriting unused “padding” bytes 
￭ Redirecting to valid instructions
￭ Other weird undefined behavior

￭ A crash-only fuzzing oracle will miss many bugs

20



Stefan Nagy

“Better” Oracles

21



Stefan Nagy

AddressSanitizer (ASAN)

￭ Key idea: inject poisoned “red zones” before 
and after all memory objects
￭ Force a crash when accessing a red zone
￭ Catch all subtle (non-crashing) corruptions
￭ Implement via instrumentation, custom malloc()
￭ Trade-off: over 6x execution overhead

22



Stefan Nagy

UndefinedBehaviorSanitizer (UBSan)

￭ Instrumentation to check 
for undefined behavior
￭ Integer overflows
￭ OOB array indexes
￭ Illegal shift operations
￭ Missing return statements
￭ And many more

￭ Trade-off: more overhead

23



Stefan Nagy

SystemSan / ExecSan

￭ Brand-new (Sept. 2022) sanitizer to hunt command injection bugs 
￭ Trace system calls and force crash if seeing weird arguments 

24



Stefan Nagy

Assertion Violations

￭ Checks on specific variables
￭ If satisfied, continue
￭ If violated, force crash

￭ Typically added by developer
￭ Or automatically mined

￭ Potential sources:
￭ Pre- and post-conditions
￭ Likely invariants
￭ Input specification

25

https://blog.regehr.org/archives/1091



Stefan Nagy

Differential Testing

￭ Compare multiple implementations of 
the same specification
￭ Divergence = one (or more) are buggy
￭ Compare to a ground-truth implementation
￭ Compare with majority voting

￭ Well-known examples:
￭ C++ compilers (CSmith)
￭ TLS implementations (FrankenCerts)
￭ Interpreters vs. JIT compilers (JIT-Picking)

26



Stefan Nagy

The best oracles are ones that reveal bugs 
that you could not find before.

27

A note on oracles…



Stefan Nagy

Questions?

28



Stefan Nagy

Lab 2

29



Stefan Nagy

Lab 2: Crash Triage

￭ Assignment: learn how to use AddressSanitizer (ASAN)
￭ Read its documentation in https://clang.llvm.org/docs/AddressSanitizer.html 

￭ Replay the crashes you found in Lab 1 on an ASAN-instrumented binary
￭ Collect information on each crash
￭ What do you observe?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Linux environments are recommended
￭ Use a VM if you don’t have one!

30

https://clang.llvm.org/docs/AddressSanitizer.html


Stefan Nagy

Lab 2 Tips

￭ Re-run crashes on the ASAN instrumented binary
￭ Use Python to script collection of ASAN outputs
￭ Do string post-processing to collect error types, crashing source line, etc.
￭ Group and deduplicate crashes as you see fit

￭ Didn’t find any crashes in Lab 1? 
￭ Try fuzzing fuzzgoat from https://github.com/fuzzstati0n/fuzzgoat 
￭ Should yield lots of crashes quickly

31

https://github.com/fuzzstati0n/fuzzgoat


Stefan Nagy

Questions?

32


