
Stefan Nagy

Week 4: Lecture B
Runtime Feedback

1

Wednesday, January 31, 2024

Stefan Nagy

Recap: Lab 1

￭ Lab 1: Beginner Fuzzing (due 2/07 by 11:59PM)
￭ Familiarize yourself with AFL++ and its features
￭ Check out its documentation in docs/

￭ Pick three features, evaluate them, and discuss your findings
￭ E.g., impacts on code coverage, speed, crash discovery
￭ What insights do you have?
￭ Why did one feature work better than another?

￭ Deliverable: a 1–3 page report detailing your findings
￭ Feel free to make it your own (e.g., pictures, text, etc.)

￭ Need a Linux environment
￭ Use the CS 4440 VM if you don’t have one!

2

Stefan Nagy

Recap: Lab 1

￭ Pick any target program you like, e.g.:
￭ FuzzGoat fuzzing benchmark
￭ FoRTE-FuzzBench
￭ HexHive's Magma

￭ Skills you’ll learn along the way:
￭ Compiling a C/C++ program
￭ Inserting AFL++’s instrumentation
￭ Initiating fuzzing with AFL++
￭ Interpreting AFL++’s results

3

https://github.com/fuzzstati0n/fuzzgoat
https://github.com/FoRTE-Research/FoRTE-FuzzBench
https://github.com/HexHive/magma

Stefan Nagy

Recap: Key Dates
￭ Jan. 24 Lab 1 released

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

4

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Questions?

5

Stefan Nagy

Runtime Feedback

6

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

7

(new code)

(no new code)

Execute and
Collect Feedback

(e.g., code coverage)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

8

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Inputs

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

Types of Feedback-driven Fuzzers

9

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

10

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Types of Feedback-driven Fuzzers

11

Zero Introspection
Some Introspection

High Introspection

Black-box Grey-box White-box

Stefan Nagy

Feedback Considerations

￭ What makes a test case interesting for your target?

￭ How to collect this information from your target?

￭ How to store and post-process this information?

12

Stefan Nagy

Feedback depends on your goals…

￭ Fuzzing something for the first time
￭ Limited or no feedback

￭ Targeting a certain code region
￭ Distances to that location, constrained coverage

￭ Hunting use-after-free vulnerabilities
￭ Temporal memory accesses (malloc() → free() → use)

￭ Finding resource exhaustion bugs
￭ Execution path length, execution duration

13

Stefan Nagy

Trade-offs

￭ How costly is it to collect?
￭ Runtime overhead

￭ Special data structures to store it?
￭ Post-processing overhead
￭ Implementation cost

￭ How selective will it be?
￭ Not everything should look “interesting”

￭ Does it even help?

14

total execs : 3202
exec speed : 10.7/sec (slow!)

Stefan Nagy

Code Coverage

15

Stefan Nagy

Coverage-guided Fuzzing

￭ Code coverage: parts of the target code exercised by a test case

￭ Most fuzzing today is coverage-guided
￭ Good balance of performance and precision

￭ Various metrics in use today:
￭ Basic blocks
￭ Edges
￭ Hit counts
￭ Instructions
￭ Path approximations

16

Blocks

Edges Paths

Stefan Nagy

Program Control-flow Graphs (CFGs)

￭ Graph representation of every possible program path
￭ Directed graph
￭ Nodes: basic blocks
￭ Edges: control-flow transitions between blocks

￭ Essential to software analysis
￭ Compiler optimization
￭ Static vulnerability discovery
￭ Code coverage measurement

17

Stefan Nagy

CFG Examples

18

Stefan Nagy

Basic Block Coverage

￭ Basic blocks: straight-lined code sequences entered-by / ending-in transfer
￭ The nodes of the a program’s control-flow graph
￭ No control-flow transfer within a basic block

￭ Control-flow transfer instructions:
￭ Jumps
￭ Calls
￭ Returns
￭ Fall-through to next sequential block

19

Stefan Nagy

Edge Coverage

￭ Edges: transitions between basic blocks
￭ Jumps:

￭ To basic blocks
￭ Calls:

￭ To function entries
￭ Returns:

￭ To post-call caller basic block
￭ Fall-throughs:

￭ To next sequential basic block

20

Stefan Nagy

Instruction Coverage

￭ Instructions: the program’s
individual operations
￭ What the processor executes
￭ More common to measure in

post-fuzzing coverage analysis

21

Stefan Nagy

Hit Counts

22

for(m = 0; m < 3; m++){
/* loop body */

}

do {
/* loop body */
y = y + 1;

} while (y < 58);

while(d < 14){
/* loop body */
d = d + 1;

}

￭ Execution is not just forward
￭ Most program execution is spent in loops

m=0

m<3?

exit body

m++

“For”
Loop

y=0

body

y++

y<58?

exit

“Do While”
Loop

Stefan Nagy

Hit Count Coverage

￭ Hit counts: execution frequencies of blocks, edges, etc.
￭ Used to discern “interesting” changes in covering already-seen code

￭ Looping for a higher number of consecutive iterations
￭ Greater recursion depth

23

body

y++

y<58?

body

y++

y<58?

4 iterations 100 iterations

Stefan Nagy

Common Coverage Metrics in Fuzzing

24

Fuzzer Coverage Fuzzer Coverage Fuzzer Coverage

AFL Edges + Counts EnFuzz Edges + Counts ProFuzzer Edges + Counts

AFL++ Edges + Counts FairFuzz Edges + Counts QSYM Edges + Counts

AFLFast Edges + Counts honggFuzz Edges REDQUEEN Edges + Counts

AFLSmart Edges + Counts GRIMOIRE Edges + Counts SAVIOR Edges + Counts

Angora Edges + Counts laf-Intel Edges + Counts SLF Edges + Counts

CollAFL Edges + Counts libFuzzer Edges + Counts Steelix Edges + Counts

DigFuzz Edges + Counts Matryoshk
a Edges + Counts Superion Edges + Counts

Driller Edges + Counts MOpt Edges + Counts TIFF Blocks + Counts

Eclipser Edges + Counts NEUZZ Edges + Counts VUzzer Blocks + Counts

Stefan Nagy

Questions?

25

Stefan Nagy

Feedback Collection

26

Stefan Nagy

Program Instrumentation

￭ Transforming a program to add extra behavior
￭ Add new functionality that was not originally there
￭ E.g., tracing of test cases’ code coverage

￭ Source-available programs
￭ Bake-in instrumentation at compile-time
￭ Or at assembly-time

￭ Binary-only programs
￭ Statically reverse-engineer its semantics
￭ Dynamically on-the-fly as it is executing
￭ Way more complicated and difficult

27

Stefan Nagy

Instrumentation Platforms

28

Compiler

Binary (static)

Binary (dynamic)

speed

Stefan Nagy

AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples

29

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

30

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s

31

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
￭ Edge-specific hit counter incremented by one for each exercising

32

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s Edge Coverage

￭ Edge coverage via hashed basic block tuples
￭ Each basic block assigned a random ID at compile-time

￭ Edge hash: current basic block ID is XOR’d to previous basic block’s
￭ Edge-specific hit counter incremented by one for each exercising

￭ Right shift current block to preserve edge directionality (because XOR is commutative)
￭ Enables A→B to be seen as distinct from B→A; also A→A from B→B

33

cur_location = <COMPILE_TIME_RANDOM>;
Shared_mem [cur_location ⊕ prev_location]++;
prev_location = cur_location >> 1;

Stefan Nagy

AFL’s Coverage Storage

￭ Data structure: the edge bitmap
￭ EdgeIDs = trace bitmap indexes

￭ trace_bitmap[edge_id]++
￭ Global bitmap updated only if trace

contains previously-unseen index(es)
￭ The union of all covered edges

￭ Default size: 64kB (65536 entries)
￭ Why?

34

trace bitmap

global bitmap

New coverage?

✓

Stefan Nagy

Trade-offs

￭ Performance: 64kB small enough to fit in most systems’ L-2 cache
￭ Hash collisions: with more edges = more collisions = lost edges

￭ Increasing bitmap size to compensate leads to big slowdowns

35

Source: BigMap: Future-proofing Fuzzers with Efficient Large Maps

Stefan Nagy

AFL’s Hit Count Coverage

￭ Edge execution frequencies discretized to 8 “buckets”
￭ Artifact of bitmap implementation (edge ID’s map to 8-bit counters)

36

[1] [3] [4,7]

[8,15] [16,31] [32,127] [128+]

[2][1] [3][2] [4,7]

[8,15] [32,127][16,31] [128+]

Stefan Nagy

AFL’s Hit Count Coverage

￭ Edge execution frequencies discretized to 8 “buckets”
￭ Artifact of bitmap implementation (edge ID’s map to 8-bit counters)

￭ Flag changes to higher buckets as interesting

37

[1] [3] [4,7]

[8,15] [16,31] [32,127] [128+]

[2][1] [3][2] [4,7]

[8,15] [32,127][16,31] [128+]

Stefan Nagy

AFL’s Hit Count Coverage

￭ Edge execution frequencies discretized to 8 “buckets”
￭ Artifact of bitmap implementation (edge ID’s map to 8-bit counters)

￭ Flag changes to higher buckets as interesting
￭ E.g., an already seen edge’s count “jumps” from [4-7] to [16-31]

38

[1] [3] [4,7]

[8,15] [16,31] [32,127] [128+]

[2][1] [3][2] [4,7]

[8,15] [32,127][16,31] [128+]

Stefan Nagy

Trade-offs

￭ Captures many interesting program state changes
￭ Deeper loop coverage
￭ Deeper recursion depth

￭ Not all loops are the same
￭ Miss subtle hit count changes
￭ Biased to spending time in loops

￭ Some loops you should avoid
￭ Still an open research problem

39

Stefan Nagy

Building a good fuzzer is all about finding the
right balance of performance & precision.

40

Trade-offs are target-dependent!

Stefan Nagy

Building a good fuzzer is all about finding the
right balance of performance & precision.

41

Simple is (usually) better.

Trade-offs are target-dependent!

Stefan Nagy

Questions?

42

