
Stefan Nagy

Week 1: Lecture A
Course Introduction

1

Monday, January 8, 2024

Stefan Nagy

Reminders

￭ Be sure to join the course Canvas and Piazza
￭ See links at top of course page
￭ cs.utah.edu/~snagy/courses/cs5963/

￭ Trouble accessing? See me after class!
￭ Or email me at: snagy@cs.utah.edu

2

https://cs.utah.edu/~snagy/courses/cs5963/
mailto:snagy@cs.utah.edu

Stefan Nagy

Today’s Class

￭ Welcome to CS 5963/6963 😃

￭ Course Overview

￭ What is software testing?
￭ How does it work?
￭ Why do we use it?

￭ Ethics and Academic Integrity

3

Stefan Nagy 4

cs.utah.edu/~snagy
twitter.com/snagycs
@snagy@infosec.exchange

University of Utah, 2022–now

Virginia Tech, Ph.D. 2016–2022

Univ. of Illinois, B.S.
2012–2016

Stefan Nagy
Assistant Professor, KSoC

Co-founder and Co-director: Places I’ve been:

About Me

Stefan Nagy

My Research Group

5

Our work: systems and software
security, binary analysis, fuzzing

Stefan Nagy

Course Overview

6

Stefan Nagy

What brought you here?

7

Stefan Nagy

Course Goals

￭ Help you become better researchers

￭ Expose you to different perspectives

￭ Experience with state-of-the-art tools

￭ Get course credit so you can graduate?

￭ All while learning about software testing

8

Stefan Nagy

Course Components

￭ Reading & evaluating research
￭ Contextualize
￭ Pros vs. cons
￭ Contribution
￭ Summarizing
￭ Identify assumptions

9

Stefan Nagy

Course Components

￭ Reading & evaluating research
￭ Contextualize
￭ Pros vs. cons
￭ Contribution
￭ Summarizing
￭ Identify assumptions

￭ Conducting & presenting research
￭ Identify an open problem and solve it
￭ Develop new tooling and release it
￭ Evaluate and disseminate your work
￭ Help society by finding security bugs

10

Stefan Nagy

Course Format

￭ Meetings: Mondays & Wednesdays at 1:25 – 2:45 PM

￭ Locations: WEB L114 (class), MEB 3446 (office hours)
￭ Office hours held from 2:45 – 3:30 PM following lecture

￭ 20 – 30 min: instructor-led lecture on topic of the day
￭ Slides will be posted on the course website Schedule

￭ 40 – 50 min: student-led paper presentation & discussion
￭ One or two papers per day related to the lecture topic

11

Stefan Nagy

Course Website
cs.utah.edu/~snagy/courses/cs5963

12

Stefan Nagy

Schedule

￭ Weeks 1 – 3: Course Intro & Systems Research 101

￭ Weeks 4 – 9: Fundamentals of Software Fuzzing
￭ Three (relatively easy) labs
￭ Semester Project begins on Week 6

￭ Weeks 10 – 12: Emerging Enhancements in Fuzzing

￭ Weeks 13 – 16: New Frontiers & Project Presentations

13

Stefan Nagy

Grading

￭ 10% – Attendance & Paper Discussions

￭ 10% – Paper Presentations (one per student)

￭ 15% – Lab 1: Beginner Fuzzing

￭ 15% – Lab 2: Crash Triage

￭ 15% – Lab 3: Harnessing

￭ 35% – Final Project

14

Stefan Nagy

Attendance & Participation

￭ Requirement 1: Show up to class
￭ Contact me about absences in advance

15

Stefan Nagy

Attendance & Participation

￭ Requirement 1: Show up to class
￭ Contact me about absences in advance

￭ Requirement 2: Participate during
other students’ presentations
￭ Ask thoughtful questions
￭ Understand the science
￭ Help your classmates learn

16

Stefan Nagy

Paper Presentations

￭ Two paper presentations per lecture, followed by 5–10 minute discussions

17

Stefan Nagy

Paper Presentations

￭ Two paper presentations per lecture, followed by 5–10 minute discussions

￭ Audience: you are not required to read the paper
￭ … but you are required to participate in the discussion!

18

Stefan Nagy

Paper Presentations

￭ Two paper presentations per lecture, followed by 5–10 minute discussions

￭ Audience: you are not required to read the paper
￭ … but you are required to participate in the discussion!

￭ Presenters: your job is to teach us the paper
￭ Summarizing
￭ Contextualize
￭ Pros vs. cons
￭ Contributions
￭ Key assumptions
￭ Prepare a short slide deck (you can get “inspired” from existing presentations)
￭ 15 – 20 minute presentation (with a 5–10 minute audience discussion to follow)

19

Stefan Nagy

Paper Presentations

￭ Signup sheet available on course website (must use UofU gcloud account)
￭ 38 fuzzing papers from top venues in security, software engineering, and some workshops
￭ Choose one paper by Monday, January 22

20

Stefan Nagy

Hands-on Labs

￭ Three (relatively easy) labs to be completed solo
￭ Lab 1: Beginner fuzzing
￭ Lab 2: Crash triage
￭ Lab 3: Target harnessing

21

Stefan Nagy

Hands-on Labs

￭ Three (relatively easy) labs to be completed solo
￭ Lab 1: Beginner fuzzing
￭ Lab 2: Crash triage
￭ Lab 3: Target harnessing

￭ Paced with the introductory content from Weeks 4–9
￭ Apply the techniques you’ve learned in class
￭ Get familiar with state-of-the-art tools like AFL and ASAN
￭ Deliverables: a short report (1–3 pages) of what you’ve learned

22

Stefan Nagy

Hands-on Labs

￭ Three (relatively easy) labs to be completed solo
￭ Lab 1: Beginner fuzzing
￭ Lab 2: Crash triage
￭ Lab 3: Target harnessing

￭ Paced with the introductory content from Weeks 4–9
￭ Apply the techniques you’ve learned in class
￭ Get familiar with state-of-the-art tools like AFL and ASAN
￭ Deliverables: a short report (1–3 pages) of what you’ve learned

￭ Designed to prepare you for the Semester Final Project

23

Stefan Nagy

Semester Final Project

￭ Objective: uncover new bugs in a real-world program

￭ Team up in groups of 1 – 4

￭ Select an “interesting” target program of your choice; e.g.:
￭ Popular applications
￭ Nintendo emulators
￭ Old computer games
￭ MacOS Rosetta
￭ GET CREATIVE!

￭ Figure out how to fuzz your target, find bugs, and responsibly disclose them

￭ Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

24

Stefan Nagy

Semester Final Project

￭ Objective: uncover new bugs in a real-world program

￭ Team up in groups of 1 – 4

￭ Select an “interesting” target program of your choice; e.g.:
￭ Popular applications
￭ Nintendo emulators
￭ Old computer games
￭ MacOS Rosetta
￭ GET CREATIVE!

￭ Figure out how to fuzz your target, find bugs, and responsibly disclose them

￭ Deliverables: a report, disclosure of bugs, and open-source your team’s fuzzer

25

You have full creative liberty—get
creative and fuzz something fun!

Final presentations at semester’s end

5-minute project proposal on Feb. 28

Stefan Nagy

Key Dates
￭ Jan. 15 No class (MLK Jr. Day)

￭ Jan. 22 Select one paper to present

￭ Feb. 07 Lab 1 due

￭ Feb. 14 Lab 2 due

￭ Feb. 19 No class (President’s Day)

￭ Feb. 28 Lab 3 due

￭ Feb. 28 5-minute project proposals

￭ Mar. 04 & 06 No class (Spring Break)

￭ Apr. 17 & 22 Final project presentations

26

cs.utah.edu/~snagy/courses/cs5963/schedule

Stefan Nagy

Lateness Policy

￭ Assignments will be posted on course website
￭ See cs.utah.edu/~snagy/courses/cs5963/assignments

￭ Due by 11:59 PM on the specified deadline date
￭ Late assignments will not be accepted

￭ If you are sick / traveling / abducted by aliens…
￭ Try to keep me posted and we will figure something out

27

https://cs.utah.edu/~snagy/courses/cs5963/assignments

Stefan Nagy

Course Materials

￭ No textbook is required for this course

￭ Some excellent resources on fuzzing are:
￭ The Fuzzing Book by Zeller, Gopinath, Böhme, Fraser, and Holler
￭ Fuzzing Against the Machine by Antonio Nappa and Blazquez

￭ Other general computer security textbooks:
￭ Introduction to Computer Security by Goodrich and Tamassia
￭ Security Engineering by Ross Anderson

￭ These are are linked on the course syllabus
￭ cs.utah.edu/~snagy/courses/cs5963/

28

http://cs.utah.edu/~snagy/courses/cs5963/

Stefan Nagy

No Exams

29

Stefan Nagy

Questions?

30

Stefan Nagy

A Brief Overview of Software Testing

31

Stefan Nagy 32

Personal
Technology

Infrastructure & Industry

Military and
Government

Our world depends on software…

Stefan Nagy

Source: cvedetails.com

… and software security is a nightmare

33

Stefan Nagy

Source: cvedetails.com

… and software security is a nightmare

34

Stefan Nagy

Why is software insecure?

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets

35

Stefan Nagy

Why is software insecure?

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets

￭ Developer mistakes create software bugs
￭ Pointer mismanagement, bounds checking, etc.

36

Stefan Nagy

Why is software insecure?

￭ Modern applications accept many sources of input:
￭ Files
￭ Arguments
￭ Environment variables
￭ Network packets

￭ Developer mistakes create software bugs
￭ Pointer mismanagement, bounds checking, etc.

￭ Many bugs are exploitable by attackers
￭ Denial of service, info leakage, code execution

37

Stefan Nagy

Software Security Vulnerabilities

38

Source: cvedetails.com

Stefan Nagy

￭ WH: $100+ billion in annual cybersecurity damages
￭ NIST: 25 vulnerabilities per every 1,000 lines of code
￭ NASA: 1–100 million lines of code in modern software
￭ DHS: 80% of attacks exploit unknown vulnerabilities

Software Security Vulnerabilities

39

We need effective, scalable approaches for
vetting all software and systems

Stefan Nagy

Proactive Vulnerability Discovery

￭ Analyze program without running it

￭ Accuracy a major concern
￭ False negatives (vulnerabilities missed)
￭ False positives (results are unusable)

￭ As code size grows, speed drops

40

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

Dynamic Testing:Static Analysis:

Stefan Nagy

Proactive Vulnerability Discovery

41

￭ Analyze program by executing it

￭ Better accuracy: no false positives
￭ Execution reveals only what exists
￭ Program crashed? You found a bug!

￭ Capable of very high throughput

▪ Over 36,000 errors in 550 codebases
▪ Over 18,000 errors in Google Chrome
▪ Over 11,000 errors in Linux’s kernel

Dynamic Testing:
▪ Widely deployed in industry today:

Stefan Nagy 42

Key Approach: Fuzz Testing

Stefan Nagy

Program

Inputs

43

Key Approach: Fuzz Testing

Stefan Nagy

Program

Inputs

44

Key Approach: Fuzz Testing

Execute and
Collect Feedback

(e.g., code coverage)

Stefan Nagy

Program

Inputs

45

Execute and
Collect Feedback

(e.g., code coverage)

Key Approach: Fuzz Testing

✓
Interesting!

(new code)

Stefan Nagy

X
Uninteresting

Program

Inputs

46

(no new code)

Key Approach: Fuzz Testing

Execute and
Collect Feedback

(e.g., code coverage)

✓
Interesting!

(new code)

Stefan Nagy

✓

X

Interesting!

Uninteresting

Program

Inputs

47

(new code)

(no new code)

Key Approach: Fuzz Testing

Execute and
Collect Feedback

(e.g., code coverage)

Crashes

(SEGFAULT)

Stefan Nagy 48

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

Key Approach: Fuzz Testing

Stefan Nagy 49

Source: https://blog.trailofbits.com/2020/10/22/lets-build-a-high-performance-fuzzer-with-gpus/

Fuzzing continues to remain today’s most popular
and successful software security testing approach

Key Approach: Fuzz Testing

Stefan Nagy

Code Dev/Analysis Tools
Compilers, Debuggers
Language Transpilers
Binary Analysis Tools

Where do these tools fail?
How can we find their bugs?

Ongoing Work:
Fuzzing Decompilers
Fuzzing Transpilers

What code aren’t we fuzzing?
Are there bugs we are missing?

Can closed-source code be
fuzzed as well as open-source?

Ongoing Work:
Configuration Fuzzing

Automated Harnessing

50

Closed-source Binaries
Linux Binaries, Firmware

Windows, MacOS Binaries
Obfuscated Executables

Complex Codebases
Applications, Kernels

Software Product Lines
Heterogeneous Software

Prior Work:
Fast Coverage Tracing
Fast Process Execution

My Research: Extending Fuzzing’s Reach

Stefan Nagy 51

Topics in this Course

Stefan Nagy 52

￭ Input generation
￭ Runtime feedback
￭ Optimization
￭ Harnessing
￭ Sanitizers
￭ Bug oracles
￭ Property testing
￭ Differential testing
￭ Bug reporting
￭ Deduplication
￭ Root cause analysis
￭ Severity analysis

Topics in this Course

Bugs

Fuzz

Triage

Stefan Nagy

Questions?

53

Stefan Nagy

Ethical Considerations

54

Stefan Nagy

A Note on Ethics

55

NOTE: Under no circumstances may you exploit or misuse
any bugs that you find (e.g., zero-day vulnerabilities)
for unauthorized access or other illegal activity.

Violations of this policy will be referred to Student Conduct.

Stefan Nagy

A Note on Ethics

56

NOTE: Under no circumstances may you exploit or misuse
any bugs that you find (e.g., zero-day vulnerabilities)
for unauthorized access or other illegal activity.

Violations of this policy will be referred to Student Conduct.

Our goals in this course are to help devs & users, have fun, and learn!

Stefan Nagy

Questions / Professor AMA

57

Stefan Nagy

Next time on CS 5963/6963…

58

Research 101: Ideas

