Week 12: Lecture B LLMs and Fuzzing

Wednesday, April 3, 2024

How are semester projects going?

Smoothly?

Obstacles?

The Next Few Weeks

Part 4: New Frontiers in Fuzzing	
Monday Meeting	Wednesday Meeting
Apr. 01	Apr. 03
Fuzzing OS Kernels	LLM-guided Fuzzing
▶ Readings:	▶ Readings:
Apr. 08	Apr. 10
Fuzzing Compilers (guest lecture by John Regehr)	Fuzzing Hardware
▶ Readings:	▶ Readings:
Apr. 15 Fuzzing Multi-language Software ▶ Readings:	Apr. 17 Final Presentations I
Apr. 22	Apr. 24
Final Presentations II	No Class (Reading Day)

Recap: Project Schedule

Apr. 17th & 22nd: final presentations

- 15-20 5-minute slide deck and discussion
- What you did, and why, and what results
- We have 26 teams...
 - So, 13 teams per two days
 - 5 minute presentation each
 - One-minute audience Q&A
 - Keep the details tight!
- What's most important:
 - High-level technique
 - Challenges and workarounds
 - Key results (bugs found, other successes, etc.)

Questions?

LLMs: Large Language Models

Slides courtesy of Ana Marasović's lecture "Ingredients of Generative AI"

Standard Supervised Deep Learning

Stefan Nagy

Pretrain-then-Finetune (2018-2022)

Stage 1: Pretrain a model

text

Objective: generate next word (does not require that people label the next word)

Stage 2: Finetune the model

text + labels

Objective: standard supervised training

+

+

the number of tokens in the vocabulary

We know which word actually occurred in the text next

Loss: how far the calculated "probability" of that word is far from the highest possible probability (1.0)

We change values in matrices we are multiplying each token vector with in a way that minimizes the loss

We do this many, many times during pretraining (this stage can last for months)

Through this process a model implicitly captures features of language without explicitly told to do so

These features are transferable to other language task

Pretraining became much more involved

+

Stage 2: Finetune the model

text + labels

Objective: standard supervised training

This can be applied to code too

Pre-2022 pretraining:

Next word prediction

Self-supervised learning

2022 addition:

Instruction finetuning

Supervised learning

2023 addition:

Human feedback

Reinforcement learning

How do we represent text?

Figure: A Visual Guide to Using BERT for the First Time by Jay Alammar

Byte-Pair Encoding for Tokenization

SCHOOL OF COMPUTING

UNIVERSITY OF UTAH

Embedding tokens with fixed embeddings

For each token in our vocab we have a high-dimensional representation associated with it

Each row in the embedding matrix is an embedding/vector of the corresponding token

row 1 = vector of the 1st token in the vocab

row 2 = vector of the 2nd token in the vocab

row 3 = vector of the 3rd token in the vocab

row 4 = vector of the 4th token in the vocab

How do we represent text?

We retrieve rows 101, 1037, 17453, 14726, 19379, 12758, 2006, 2293, 102 of the embedding matrix

Those 9 high-dimensional vectors are input to our model

Figure: <u>A Visual Guide to Using BERT for the First Time by Jay Alammar</u>

What follows is a *lot* of matrix-vector computations

At the end, each input token vector is transformed into a new vector

We call this new vector "(hidden) representation"

A number in matrices we use to multiply each token vector with is called a parameter

Large in "large language models" means that the total number of parameters is large (a few billion or more)

Figure: <u>A Visual Guide to Using BERT for the First Time by Jay Alammar</u>

Pre "Generative AI"

Stefan Nagy

Pre "Generative AI"

Stefan Nagy

UNIVERSITY OF UTAH

We want models that can do all sorts of tasks for us (general-purpose)

We develop models to generate the label tokens (e.g. "positive", "negative")

We add an instruction to induce a task-specific behavior, e.g.:

- "TL;DR" or "summarize: " for summarization
- "In this task, you are given an article. Your task is to summarize the article in a sentence."

An example of a prompt

In this task, you're expected to write answers to questions involving reasoning about negation. Instruction The answer to the question should be "yes", "no", "don't know" or a phrase in the passage. Questions can have only one correct answer.\n **Passage:** Trams have operated continuously in Melbourne since 1885 (the horse tram line in Fairfield opened in 1884, but was at best an irregular service). Since then they have become a A task distinctive part of Melbourne's character and feature in tourism and travel advertising. instance Melbourne's cable tram system opened in 1885, and expanded to one of the largest in the world, with of double track. The first electric tram line opened in 1889, but closed only a few years later in 1896. In 1906 electric tram systems were opened in St Kilda and Essendon, marking the start of continuous operation of Melbourne's electric trams. Question: If I wanted to take a horse tram in 1884, could I look up the next tram on a schedule?\n **Answer:**

The model generates the answer: "No"

Example from [Ravichander et al., 2022]

A layperson or a domain expert that interacts with an NLP model:

- Have no access to model parameters
- Have no knowledge of how to change the model parameters
- But they are able to provide a few examples of their task

In this task, you're expected to write answers to questions involving reasoning about negation. The answer to the question should be **Task description** "yes", "no", "don't know" or a phrase in the passage. Questions can have only one correct answer.\n

Passage: During the 1930s, Jehovah's Witnesses in Germany were sent to concentration camps by the thousands, due to their refusal to salute the Nazi flag, which the government considered to be a crime. Jehovah's Witnesses believe that the obligation imposed by the law of God is superior to that of laws enacted by government. Their religious beliefs include a literal version of Exodus, Chapter 20, verses 4 and 5, which says: "Thou shalt not make unto thee any graven image, or any likeness of anything that is in heaven above, or that is in the earth beneath, or that is in the water under the earth; thou shalt not bow down thyself to them nor serve them." They consider that the flag is an 'image' within this command. For this reason, they refused to salute the flag.\n

Question: Is it likely that most of these Jehovah's Witnesses survived the war (having the same likelihood of survival as other German civilians) only to later see Soviet flags in their country, or American soldiers proudly saluting the stars and stripes?

Answer: NO\n

###\n

Passage: Francesco Rognoni was another composer who specified the trombone in a set of divisions (variations) on the well-known song "Suzanne ung jour" (London Pro Musica, REP15). Rognoni was a master violin and gamba player whose treatise "Selva di Varie passaggi secondo l'uso moderno" (Milan 1620 and facsimile reprint by Arnaldo Forni Editore 2001) details improvisation of diminutions and Suzanne is given as one example. Although most diminutions are written for organ, string instruments or cornett, Suzanne is "per violone over Trombone alla bastarda". With virtuosic semiquaver passages across the range of the instrument, it reflects Praetorius' comments about the large range of the tenor and bass trombones, and good players of the Quartposaune (bass trombone in F) could play fast runs and leaps like a viola bastarda or cornetto. The term "bastarda" describes a technique that made variations on all the different voices of a part song, rather than just the melody or the bass: "considered legitimate because it was not polyphonic".

Question: Would you likely find the term "bastarda" regularly used in an academic paper on musical theory?\n

Answer: DON'T KNOW\n

###\n

[...]

###\n

Passage: Trams have operated continuously in Melbourne since 1885 (the horse tram line in Fairfield opened in 1884, but was at best an irregular service). Since then they have become a distinctive part of Melbourne's character and feature in tourism and travel advertising. Melbourne's cable tram system opened in 1885, and expanded to one of the largest in the world, with of double track. The first electric tram line opened in 1889, but closed only a few years later in 1896. In 1906 electric tram systems were opened in St Kilda and Essendon, marking the start of continuous operation of Melbourne's electric trams.\n Question: If I wanted to take a horse tram in 1884, could I look up the next tram on a schedule?\n Answer:

Test instance

Passage: Francesco Rognoni was another composer who specified the trombone in a set of divisions (variations) on the well-known song "Suzanne ung jour" (London Pro Musica, REP15). Rognoni was a master violin and gamba player whose treatise "Selva di Varie passaggi secondo l'uso moderno" (Milan 1620 and facsimile reprint by Arnaldo Forni Editore 2001) details improvisation of diminutions and Suzanne is given as one example. Although most diminutions are written for organ, string instruments or cornett, Suzanne is "per violone over Trombone alla bastarda". With virtuosic semiquaver passages across the range of the instrument, it reflects Praetorius' comments about the large range of the tenor and bass trombones, and good players of the Quartposaune (bass trombone in F) could play fast runs and leaps like a viola bastarda or cornetto. The term "bastarda" describes a technique that made variations on all the different voices of a part song, rather than just the melody or the bass: "considered legitimate because it was not polyphonic".

Question: Would you likely find the term "bastarda" regularly used in an academic paper on musical theory?

Answer: Let's think step by step. From the passage it is unclear whether 'bastarda' was a technique that was impactful and important which are reasons why one could expect to see it regularly in an academic paper on musical theory. So the answer is DON'T KNOW.

###

Passage: During the 1930s, Jehovah's Witnesses in Germany were sent to concentration camps by the thousands, due to their refusal to salute the Nazi flag, which the government considered to be a crime. Jehovah's Witnesses believe that the obligation imposed by the law of God is superior to that of laws enacted by government. Their religious beliefs include a literal version of Exodus, Chapter 20, verses 4 and 5, which says: "Thou shalt not make unto thee any graven image, or any likeness of anything that is in heaven above, or that is in the earth beneath, or that is in the water under the earth; thou shalt not bow down thyself to them nor serve them." They consider that the flag is an 'image' within this command. For this reason, they refused to salute the flag.

Question: Is it likely that most of these Jehovah's Witnesses survived the war (having the same likelihood of survival as other German civilians) only to later see Soviet flags in their country, or American soldiers proudly saluting the stars and stripes?

Answer: Let's think step by step. Worshiping any flag is forbidden by their religion and this religious law to them is superior to laws enacted by the government. Thus, even after the war, they are unlikely to condone people saluting Soviet or American flags. So the answer is NO.

###

[...]

###

Passage: Trams have operated continuously in Melbourne since 1885 (the horse tram line in Fairfield opened in 1884, but was at best an irregular service). Since then they have become a distinctive part of Melbourne's character and feature in tourism and travel advertising. Melbourne's cable tram system opened in 1885, and expanded to one of the largest in the world, with of double track. The first electric tram line opened in 1889, but closed only a few years later in 1896. In 1906 electric tram systems were opened in St Kilda and Essendon, marking the start of continuous operation of Melbourne's electric trams. **Question:** If I wanted to take a horse tram in 1884, could I look up the next tram on a schedule? **Answer: Let's think step by step.**

Test instance

Cot

Shots with

-

Examples

Instruction Finetuning

Train/finetune a model with the next word prediction objective:

- 1. To follow instructions
- 2. With chain-of-thoughts (& self-consistency) prompts to elicit reasoning skills
- 3. With concatenated examples to induce in-context learning

With <u>labeled</u> data of <u>1800</u> tasks

Open challenge: Optimize context length & context construction

We want to fit an instruction & a few demonstrations with their explanations & a new instance we want predictions...

...and even more for **Retrieval Augmented Generation** (to avoid hallucinations)

Longer the context, the more we can squeeze

[Liu et al., 2023]: models prefer info at the beginning/end of the index than in the middle

[LlamaIndex Webinar]

[Chip Huyen's April'23 Open challenges in LLM research]

Pre-2022 pretraining:

Next word prediction

Self-supervised learning

2022 addition:

Instruction finetuning

Supervised learning

2023 addition:

Human feedback

Reinforcement learning

Learning from Tay's introduction

Mar 25, 2016 | Peter Lee - Corporate Vice President, Microsoft Healthcare

As many of you know by now, on Wednesday we launched a chatbot called Tay. We are deeply sorry for the unintended offensive and hurtful tweets from Tay, which do not represent who we are or what we stand for, nor how we designed Tay. Tay is now offline and we'll look to bring Tay back only when we are confident we can better anticipate malicious intent that conflicts with our principles and values.

I want to share what we learned and how we're taking these lessons forward.

For context, Tay was not the first artificial intelligence application we released into the online social world. In China, our Xiaolce chatbot is being used by some 40 million people, delighting with its stories and conversations. The great experience with Xiaolce led us to wonder: Would an AI like this be just as captivating in a radically different cultural environment? Tay – a chatbot created for 18- to 24- year-olds in the U.S. for entertainment purposes – is our first attempt to answer this question.

Read more: https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/

Reinforcement Learning from Human Feedback

Step 1

Collect demonstration data, and train a supervised policy.

Figure from: https://openai.com/blog/instruction-following/

Reinforcement Learning from Human Feedback

B

Explain war.

D

People went to

the moon...

Collect comparison data,

and train a reward model.

Step 1

Step 2

Collect demonstration data. and train a supervised policy.

Figure from: https://openai.com/blog/instruction-following/

Reinforcement Learning from Human Feedback

Step 1 Step 2 Step 3 Collect demonstration data. Collect comparison data, **Optimize a policy against** and train a supervised policy. and train a reward model. the reward model using reinforcement learning. A prompt is A prompt and A new prompt 3 0 sampled from our several model is sampled from Explain the moon Explain the moon Write a story prompt dataset. outputs are the dataset. landing to a 6 year old landing to a 6 year old about frogs sampled. B A The policy Explain gravity. Explain war. A labeler generates C D demonstrates the Moon is natura People went to an output. desired output satellite of ... the moon behavior. Some people went to the moon... A labeler ranks Once upon a time. the outputs from best to worst. This data is used SET C > A = B The reward model to fine-tune GPT-3 calculates a with supervised reward for learning. This data is used the output. to train our reward model. The reward is used to update D > C > A = B the policy

Figure from: https://openai.com/blog/instruction-following/

using PPO.

Red Teaming

[Text copied from the link below]

Elicits model vulnerabilities that might lead to undesirable behaviors

Goal: craft a prompt that would trigger the model to generate harmful text:

- upsetting user experiences
- enabling harm by aiding violence
- enabling other unlawful activity for a user with malicious intentions

The outputs from red-teaming

 \Rightarrow Train the model to be less likely to cause harm

LLaMA-2

Figure from: <u>https://ai.meta.com/resources/models-and-libraries/llama/</u>

Open challenge: Learning from human feedback

1. Do we really need "hacky" RL?

Open challenge: Learning from human feedback

- 2. Whose preference is "human" preference, taking into account the differences in cultures, religions, political leanings, etc.?
- 3. How to balance multiple preferences (helpful, honest, and harmless)?
- 4. Do we want Als that can take a stand or a vanilla Al that shies away from any potentially controversial topic?

Pre-2022 pretraining:

Next word prediction

Self-supervised learning

2022 addition:

Instruction finetuning

Supervised learning

2023 addition:

Human feedback

Reinforcement learning

What data exactly is used at each stage?

What data exactly is used at each stage?

Since the data is huge, **analyses are slow**:

Comparing vector representations of a given instance with each pretraining instance
Finding examples that influence model output [Grosse et al., 2023]

Data filtering should be done with care:

- ✓ Quality filters improve performance [Longpre et al., 2023]
- **×** Toxicity filters trade off ability to reduce risk of toxic generation [Longpre et al., 2023]
- Erasing marginalized voices represented in the data [Dodge et al., 2021]

Analyzing data that contains e.g. pornography [Birhane et al., 2021] takes toll on people

What data exactly is used at each stage?

Developer's dilemma:

- 1. To make useful models, they need data
- 2. A developer wants to do right by the people who created the data

How to achieve both of these simultaneously?

Nascent research area

Questions?

