
Stefan Nagy

Week 10: Lecture A
Hybrid Fuzzing I

1

Monday, March 18, 2024

Stefan Nagy

How are projects going?

Problems?

2

Successes?

Stefan Nagy

Recap: Project Schedule

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results

3

Stefan Nagy

Questions?

4

Stefan Nagy

Input Generation Recap

5

Stefan Nagy

Recap: Model-agnostic Mutation

￭ Random mutation operators
￭ Bit and byte flips

￭ Single, two, or four bits in a row

￭ Arithmetic operators
￭ Additions/subtractions of both endians

￭ Inject “fun” values (-1, 256, 1024, etc.)
￭ Values that often cause weird behavior

6

11 11 00 11 11 11 11 11

11 11 11 12 11 11 11 11

11 11 11 11 FF 11 11 11

Stefan Nagy

Recap: Model-guided Generation

￭ Follow a pre-defined input specification
￭ Pre-defined input grammars
￭ Dynamically-learned grammars
￭ Domain-specific generators

￭ Produces many more valid inputs
￭ Model-agnostic inputs are often discarded

because they fail basic input sanity checks

7

Stefan Nagy

Recap: Symbolic Execution

8

0. def f (x, y):
1. if (x > y):
2. x = x + y
3. y = x - y
4. x = x - y
5. if (x - y > 0):
6. assert false
7. return (x, y)

 x : A
 y : B

 x : A+B
 y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6 x : B
 y : A L6

unsatisfiable satisfiable

satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable

Stefan Nagy

Recap: Taint Tracking

￭ Track input bytes’ flow throughput the program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks via:
￭ Random mutation
￭ Insertion of fun or useful tokens

9

Stefan Nagy

Summary of Input Generation

￭ Model-agnostic: brute-force your way to valid inputs
￭ Random insertions, deletions, and splicing

￭ Model-guided: follow a pre-defined input specification
￭ Follow “rules” to create highly-structured inputs

￭ White-box approaches:
￭ Symbolic execution: solve branches as symbolic expressions
￭ Concolic execution: solve branches as concrete values
￭ Taint tracking: infer critical input “parts” and mutate those

10

Source: The Art, Science, and Engineering of Fuzzing: A Survey

Stefan Nagy

Trade-offs

￭ Model-agnostic: great on simple, easy-to-solve branches
￭ Need a lot of luck to solve multi-byte conditionals, checksums

￭ Model-guided: more valid inputs leads to higher coverage
￭ Out of luck if specification is not defined or hard-to-define

￭ White-box approaches:
￭ Symbolic / concolic exec: precise solving of multi-byte conditionals
￭ Taint tracking: easily identifies key data objects, branch constraints
￭ Far too heavyweight to deploy on all generated inputs

11

Source: The Art, Science, and Engineering of Fuzzing: A Survey

Stefan Nagy

Recap: What does your code coverage tell you?

￭ Edge coverage:
￭ Strictly increases with time

￭ Ideally increases the whole time

￭ Always look at multiple trials
￭ Studies show at least 5 trials

￭ All fuzzers eventually plateau

￭ Early plateaus indicate you are stuck
￭ Revisit your approach and try again

￭ Combine multiple techniques

12

Fuzzing Time

Edges

Covered

Fuzzing Time

Edges

Covered

Stefan Nagy

Recap: What does your code coverage tell you?

￭ Edge coverage:
￭ Strictly increases with time

￭ Ideally increases the whole time

￭ Always look at multiple trials
￭ Studies show at least 5 trials

￭ All fuzzers eventually plateau

￭ Early plateaus indicate you are stuck
￭ Revisit your approach and try again

￭ Combine multiple techniques

13

Fuzzing Time

Edges

Covered

Fuzzing Time

Edges

Covered

“Hybrid” Fuzzing

Stefan Nagy

Questions?

14

Stefan Nagy

Hybrid Fuzzing

15

Stefan Nagy

What is hybrid fuzzing?

￭ Combining random fuzzing with smarter fuzzing
￭ E.g., random + concolic execution (Driller, QSYM, Savior)
￭ E.g., random + taint tracking (VUzzer, RedQueen, Angora)

￭ Goal is to balance strengths of both techniques
￭ Use generic fuzzing for most test cases

￭ Use speed to brute-force easy branches
￭ Deploy more elegant approach selectively

￭ Focus its precision on harder branches

16

Stefan Nagy

✓

X

Interesting!

Uninteresting

17

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Random

Execute and
Collect Feedback

(e.g., code coverage)

Input Generation

Stefan Nagy

✓

X

Interesting!

Uninteresting

18

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Random

Execute and
Collect Feedback

(e.g., code coverage)
Alternative

Input Generation

Stefan Nagy

✓

X

Interesting!

Uninteresting

19

(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Execute and
Collect Feedback

(e.g., code coverage)
Alternative

(<< N inputs)

Input Generation

Random
(~N inputs)

Stefan Nagy 20

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

local queue

How most hybrid fuzzers work…

Stefan Nagy 21

Random (e.g., AFL) Alternative (e.g., symex)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

local queue local queue

How most hybrid fuzzers work…

Stefan Nagy 22

Random (e.g., AFL) Alternative (e.g., symex)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

local queue

Sync!

local queue

How most hybrid fuzzers work…

Stefan Nagy

How most hybrid fuzzers work…

23

Random (e.g., AFL) Alternative (e.g., symex)

local queue local queue

Sync!

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

Stefan Nagy 24

Alternative (e.g., symex)

local queue local queue

Solve!

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 25

Alternative (e.g., symex)

local queue local queue

Solve!

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 26

Alternative (e.g., symex)

local queue local queue

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 27

local queue local queue

Alternative (e.g., symex)

Sync!

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 28

local queue local queue

Alternative (e.g., symex)

Sync!

? ?

?

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 29

local queue local queue

Alternative (e.g., symex)

Sync!

?

?

✓
New code
coverage?

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 30

local queue local queue

Alternative (e.g., symex)

Sync!

?

?

✓
New code
coverage?

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 31

local queue local queue

Alternative (e.g., symex)

Solve!

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

How most hybrid fuzzers work…

Stefan Nagy 32

local queue local queue

Alternative (e.g., symex)

Solve!

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

Question: What could go wrong?
short group discussion

How most hybrid fuzzers work…

Stefan Nagy

What could go wrong?

￭ Ineffective seed scheduling
￭ There are fundamental differences in speed

￭ AFL can solve basic branch conditionals fast
￭ Fancier approaches generally are much slower

￭ Heavyweight approaches are best applied to a subset of paths
￭ Invoking on all paths will lead to path explosion
￭ E.g., by the time it’s solved, fuzzer is already way past

33

Stefan Nagy

What could go wrong?

￭ Ineffective seed scheduling

34

Stefan Nagy

What could go wrong?

￭ Ineffective seed scheduling

35

Stefan Nagy

What could go wrong?

￭ Ineffective seed scheduling

36

Stefan Nagy

What could go wrong?

￭ Ineffective seed scheduling

37

0 min Time spent fuzzing

Edges
Covered

Stefan Nagy

Solution: Prioritization

￭ Idea: invoke heavier-weight generation only strategically
￭ Demand launch (e.g, Driller): when fuzzer gets “stuck”

￭ Perform concolic exec when progress stalls
￭ Not stuck? Continue random fuzzing

￭ Cost-based launch (e.g., DigFuzz): on “costly” paths
￭ Prioritize solving rare or unseen branches
￭ Infer via lightweight program analysis

38

Stefan Nagy

Trade-offs

￭ Demand launch: need an accurate way to determine stalling
￭ Time-based: no new coverage in some time interval
￭ Coverage-based: rate of change drops below some threshold
￭ These heuristics are fundamentally ad-hoc

￭ Cost-based launch: subject to imprecision
￭ Observed coverage provides an incomplete picture

￭ Rare branches may guard ultimately fruitless paths
￭ More precise approach is analyzing the entire program

￭ Really difficult for large or closed-source programs

39

Stefan Nagy

What (else) could go wrong?

￭ Discrepancies in program structure
￭ Missing branches or paths

￭ E.g., from Instrumentation differences
￭ Obstructs from incomplete information
￭ Not a very common problem

￭ Disagreeing coverage metrics
￭ E.g., basic blocks versus edges
￭ Will affect test case syncing phase
￭ Many test cases won’t be seen as novel

40

Stefan Nagy

What could go wrong?

￭ Discrepancies in program structure

41

?

Stefan Nagy

Questions?

42

