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How are projects going?

Problems?
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Successes?
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Recap: Project Schedule

￭ Mar. 27th: in-class project workday

￭ Apr. 17th & 22nd: final presentations
￭ 15–20 minute slide deck and discussion
￭ What you did, and why, and what results
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Questions?
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Input Generation Recap
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Recap: Model-agnostic Mutation

￭ Random mutation operators 
￭ Bit and byte flips

￭ Single, two, or four bits in a row

￭ Arithmetic operators
￭ Additions/subtractions of both endians

￭ Inject “fun” values (-1, 256, 1024, etc.)
￭ Values that often cause weird behavior
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Recap: Model-guided Generation

￭ Follow a pre-defined input specification 
￭ Pre-defined input grammars
￭ Dynamically-learned grammars
￭ Domain-specific generators

￭ Produces many more valid inputs
￭ Model-agnostic inputs are often discarded

because they fail basic input sanity checks
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Recap: Symbolic Execution
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0. def f (x, y): 
1.  if (x > y): 
2.    x = x + y 
3.    y = x - y
4.    x = x - y 
5.    if (x - y > 0):
6.      assert false 
7.  return (x, y)

 x : A
 y : B

  x : A+B
  y : B

A > B A <= B

 x : A
 y : B

x : A+B
y : (A+B) - B = A

x : (A+B) - A = B
y : A

 x : B
 y : A

B - A > 0 B - A <= 0

L2

L3

L4

L7

L6  x : B
 y : A L6

unsatisfiable satisfiable

satisfiable

Possible path constraints:
● (A > B) and (B-A > 0) = unsatisfiable
● (A > B) and (B-A <= 0) = satisfiable
● (A <= B) = satisfiable
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Recap: Taint Tracking

￭ Track input bytes’ flow throughput the program
￭ Identify input “chunks” that affect program state

￭ Chunks that affect branches
￭ Chunks that flow to function calls

￭ Mutate these chunks via:
￭ Random mutation
￭ Insertion of fun or useful tokens
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Summary of Input Generation

￭ Model-agnostic: brute-force your way to valid inputs
￭ Random insertions, deletions, and splicing

￭ Model-guided: follow a pre-defined input specification 
￭ Follow “rules” to create highly-structured inputs

￭ White-box approaches: 
￭ Symbolic execution: solve branches as symbolic expressions
￭ Concolic execution: solve branches as concrete values
￭ Taint tracking: infer critical input “parts” and mutate those
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Source: The Art, Science, and Engineering of Fuzzing: A Survey
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Trade-offs

￭ Model-agnostic: great on simple, easy-to-solve branches
￭ Need a lot of luck to solve multi-byte conditionals, checksums 

￭ Model-guided: more valid inputs leads to higher coverage
￭ Out of luck if specification is not defined or hard-to-define

￭ White-box approaches: 
￭ Symbolic / concolic exec: precise solving of multi-byte conditionals
￭ Taint tracking: easily identifies key data objects, branch constraints
￭ Far too heavyweight to deploy on all generated inputs
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Source: The Art, Science, and Engineering of Fuzzing: A Survey
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Recap: What does your code coverage tell you?

￭ Edge coverage:
￭ Strictly increases with time

￭ Ideally increases the whole time

￭ Always look at multiple trials
￭ Studies show at least 5 trials

 
￭ All fuzzers eventually plateau

￭ Early plateaus indicate you are stuck
￭ Revisit your approach and try again

￭ Combine multiple techniques
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Questions?
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Hybrid Fuzzing
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What is hybrid fuzzing?

￭ Combining random fuzzing with smarter fuzzing
￭ E.g., random + concolic execution (Driller, QSYM, Savior)
￭ E.g., random + taint tracking (VUzzer, RedQueen, Angora)

￭ Goal is to balance strengths of both techniques
￭ Use generic fuzzing for most test cases

￭ Use speed to brute-force easy branches
￭ Deploy more elegant approach selectively

￭ Focus its precision on harder branches
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✓

X

Interesting!

Uninteresting
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(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Random

Execute and 
Collect Feedback
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Input Generation
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(new code)

(no new code)

Crashes

(SEGFAULT)

Recap: Coverage-guided Fuzzing

Execute and 
Collect Feedback

 

(e.g., code coverage)
Alternative

( << N inputs )

Input Generation

Random
( ~N inputs )
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Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

local queue

How most hybrid fuzzers work…



Stefan Nagy 21

Random (e.g., AFL) Alternative (e.g., symex)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

local queue local queue

How most hybrid fuzzers work…
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How most hybrid fuzzers work…
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local queue local queue

Alternative (e.g., symex)

Solve!

Random (e.g., AFL)

￭ Leverage AFL-style parallel fuzzing mode with random fuzzer as parent

Question: What could go wrong?
short group discussion

How most hybrid fuzzers work…
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What could go wrong?

￭ Ineffective seed scheduling
￭ There are fundamental differences in speed

￭ AFL can solve basic branch conditionals fast
￭ Fancier approaches generally are much slower

￭ Heavyweight approaches are best applied to a subset of paths
￭ Invoking on all paths will lead to path explosion
￭ E.g., by the time it’s solved, fuzzer is already way past
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What could go wrong?

￭ Ineffective seed scheduling
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Solution: Prioritization

￭ Idea: invoke heavier-weight generation only strategically
￭ Demand launch (e.g, Driller): when fuzzer gets “stuck”

￭ Perform concolic exec when progress stalls
￭ Not stuck? Continue random fuzzing 

￭ Cost-based launch (e.g., DigFuzz): on “costly” paths
￭ Prioritize solving rare or unseen branches
￭ Infer via lightweight program analysis
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Trade-offs

￭ Demand launch: need an accurate way to determine stalling
￭ Time-based: no new coverage in some time interval
￭ Coverage-based: rate of change drops below some threshold
￭ These heuristics are fundamentally ad-hoc

￭ Cost-based launch: subject to imprecision
￭ Observed coverage provides an incomplete picture

￭ Rare branches may guard ultimately fruitless paths
￭ More precise approach is analyzing the entire program

￭ Really difficult for large or closed-source programs
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What (else) could go wrong?

￭ Discrepancies in program structure
￭ Missing branches or paths

￭ E.g., from Instrumentation differences
￭ Obstructs from incomplete information
￭ Not a very common problem

￭ Disagreeing coverage metrics
￭ E.g., basic blocks versus edges
￭ Will affect test case syncing phase
￭ Many test cases won’t be seen as novel
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What could go wrong?

￭ Discrepancies in program structure
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Questions?
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