

Bayesian Tensor Decomposition: Dynamics and Sparsity

Presenter: 方榯楷 Shikai Fang

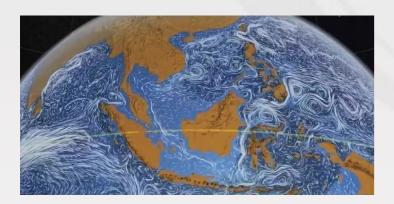
School of computing, The University of Utah For ZJU talk

Outline

- 1. Background
- 2. Tensor learning via Bayesian Inference
- 3. Dynamics in Tensor (ICML 2022 oral paper)
- 4. Sparsity in Tensor(UAI & ICML 2021 paper)

Tensor Data: Widely Used High-Order Data Structures to Represent Interactions of Multiple Objects/Entities

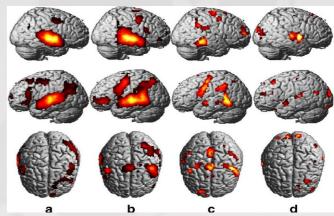
(user, movie, episode)



(location, region, time, climate)

(user, advertisement, page-section)

(user, location, message-type)



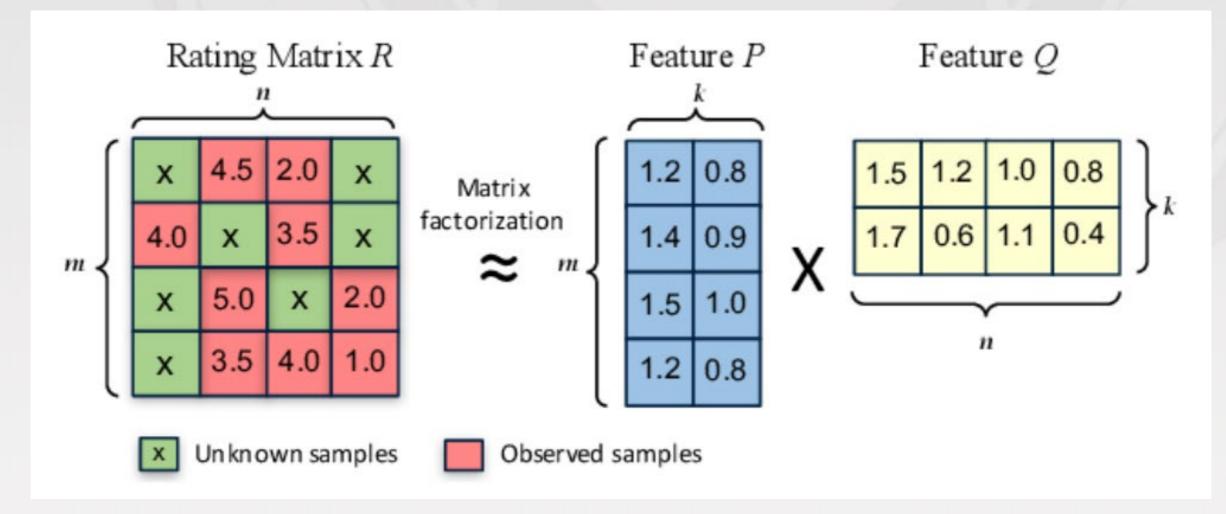
(subject, voxel, electrode)

(patient, gene, condition)

Tensor Decomposition: estimate latent factors to reconstruct tensor with observed entries

• Simple case:

Collaborative Filtering (Matrix Factorization)



4

Tensor Decomposition: estimate latent factors to reconstruct tensor with observed entries

• Simple case:

Collaborative Filtering (Matrix Factorization)

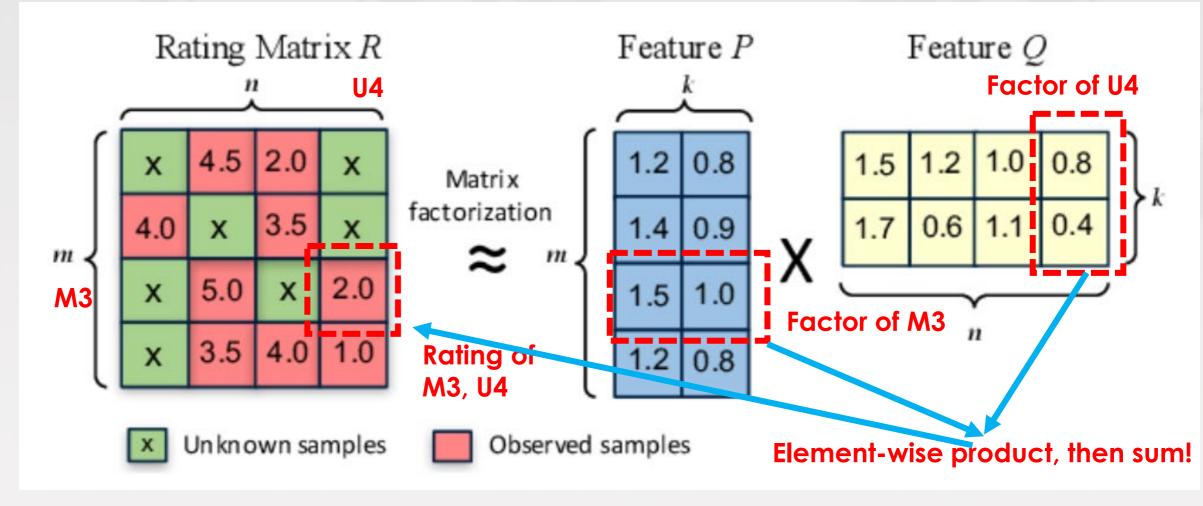


Image from https://www.slideshare.net/hontolab/matrix-factorization-192159058

5

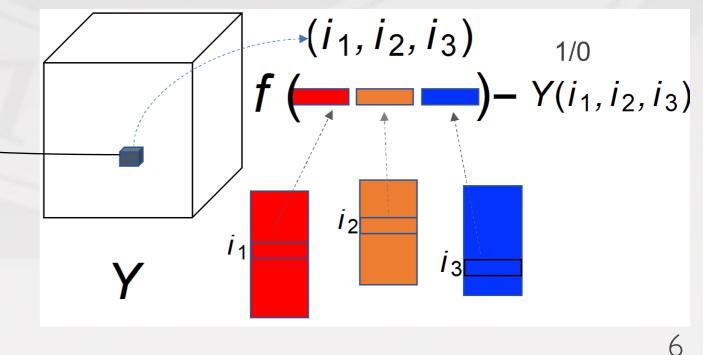
From matrix to tensor: **CP decomposition**

• Example of three-mode tensor:

$$\mathcal{X} \in \mathbb{R}^{I \times J \times K}, A \in \mathbb{R}^{I \times R}, B \in \mathbb{R}^{J \times R}, C \in \mathbb{R}^{K \times R}$$
$$x_{ijk} \approx \sum_{r=1}^{R} A_{ir} B_{jr} C_{kr} \text{ for } i = 1, \dots, I, j = 1, \dots, J, k = 1, \dots, K$$

Element-wise product, then sum! Interaction Records

user	item	page	purchase
100	25	35	1
23	21	56	0
100	25	35	1
32	33	46	0

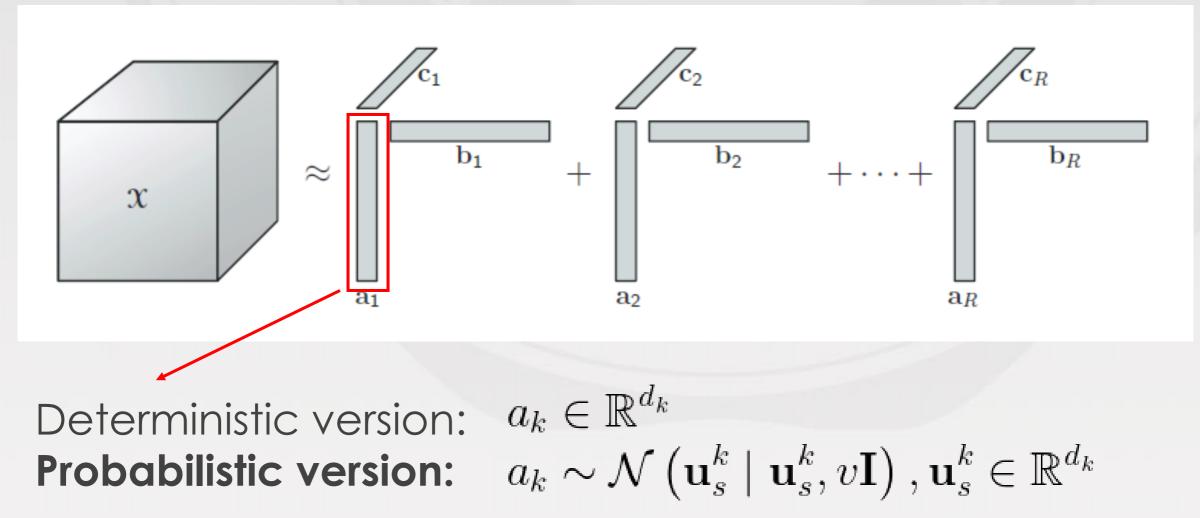


Outline

- 1. Background
- 2. Tensor learning via Bayesian Inference
- 3. Dynamics in Tensor (ICML 2022 oral paper)
- 4. Sparsity in Tensor(UAI & ICML 2021 paper)

- Make latent factor from variable to a distribution
- Turns Deterministic model -> Bayesian model

Uncertainty really counts!



7

Bayesian version for CP decomposition,
the joint distribution is:

Observed data, factors, noise Prior of the noise
$$p(\{y_i\}_{i \in S} | \mathcal{U}, \tau) = Gam(\tau \mid a_0, b_0) \prod_{k=1}^{K} \prod_{s=1}^{d_k} \mathcal{N}(\mathbf{u}_s^k \mid \mathbf{m}_s^k, v\mathbf{I})$$

$$\prod_{i \in S} \mathcal{N}(y_i \mid \mathbf{1}^\top (\mathbf{u}_{i_1}^1 \circ \ldots \circ \mathbf{u}_{i_K}^K), \tau^{-1})$$

Gauss likelihood of the prediction

Final goal : Get the **exact posterior distribution :** $p(\mathcal{U}, \tau | \{y_{\mathbf{i}}\}_{\mathbf{i} \in S}) = \frac{p(\{y_{\mathbf{i}}\}_{\mathbf{i} \in S}, \mathcal{U}, \tau)}{p(\{y_{\mathbf{i}}\}_{\mathbf{i} \in S})}$

Distribution of data, Constant, we never know!!

- Exact posterior distribution p is always intractable
 Approximation it by a tractable distribution: q
- $p\left(\mathcal{U},\tau \mid \{y_{\mathbf{i}}\}_{\mathbf{i}\in S}\right) \approx q(\mathcal{U},\tau) = q(\tau) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} q\left(\mathbf{u}_{s}^{k}\right)$ $= \operatorname{Gamma}(\tau \mid a^{\star}, b^{\star}) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{s}^{k} \mid \boldsymbol{\mu}_{s}^{k \star}, \boldsymbol{\Sigma}_{s}^{k \star}\right)$

Parameters needed to be optimized to make the approximation accurate !!

Become a problem of distribution match!

• Key point in Bayesian machine learning

$$p\left(\{y_{\mathbf{i}}\}_{\mathbf{i}\in S}, \mathcal{U}, \tau\right) = \operatorname{Gam}\left(\tau \mid a_{0}, b_{0}\right) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{s}^{k} \mid \mathbf{m}_{s}^{k}, v\mathbf{I}\right)$$
$$\prod_{\mathbf{i}\in S} \mathcal{N}\left(y_{\mathbf{i}} \mid f\left(\mathbf{u}_{i_{1}}^{1}, \dots, \mathbf{u}_{i_{K}}^{K}\right), \tau^{-1}\right)$$

 $p(\mathcal{U}, \tau | \{y_{\mathbf{i}}\}_{\mathbf{i} \in S}) \approx q(\mathcal{U}, \tau) = q(\tau) \prod_{k=1}^{K} \prod_{s=1}^{d_k} q(\mathbf{u}_s^k)$

$$= \operatorname{Gamma}(\tau \mid a^{\star}, b^{\star}) \prod_{k=1}^{K} \prod_{s=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{s}^{k} \mid \boldsymbol{\mu}_{s}^{k} \star, \boldsymbol{\Sigma}_{s}^{k} \star\right)$$

- Complete toolbox, but no silver bullet.
- Depend on the model f picked for the likelihood

Most-frequently used tool: Variational inference(VI): minimize the KL divergence of two distributions

$$\mathcal{L} = \int q^*(\mathcal{U}, \tau) \log \frac{p\left(\{y_i\}_{i \in S_t} \mid \mathcal{U}, \tau\right) q(\mathcal{U}, \tau)}{q^*(\mathcal{U}, \tau)} \mathrm{d}\mathcal{U} \mathrm{d}\tau$$

- Expectation propagation(EP): moment match when L(reverse order) has closed form solution
- Assumed density filtering(ADF): moment match when having tractable normalization term
- Reparameterization trick (SVI):
 Probabilistic version SGD when L is totally intractable
 ... (sampling based methods)

Series of work from our group under such architecture.

Short Names	Likelihood Model & Prior	Inference Method	Publication
POST[1]	CP decomposition/multi- linear	EP	ICDM 2018
POND[2]	Neural-kernel Gaussian process	SVI	ICDM 2020
SBTD[3]	Bayesian neural network + Sparse	ADF (Streaming)	ICML 2021
BASS[4]	Tucker decomposition + Sparse	ADF (Streaming)	UAI 2021
BCTT[5]	Tucker decomposition + Dynamics	CEP + KF/RTS	ICML 2022

[1]Du, Yishuai, et al. "Probabilistic streaming tensor decomposition." 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018.
 [2]Conor Tillinghast, Shikai Fang, Kai Zheng, and Shandian Zhe, "Probabilistic Neural-Kernel Tensor Decomposition", IEEE International Conference on Data Mining (ICDM), 2020.

[3] Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization." The Thirty-eighth International Conference on Machine Learning (ICML), 2021

[4] Fang, Shikai, et al. "Bayesian Streaming Sparse Tucker decomposition." Conference on Uncertainty in Artificial Intelligence. UAI, 2021.
 [5] Fang, Shikai, et al. "Bayesian Continues-Time Tucker Decomposition." The Thirty-ninth International Conference on Machine Learning (ICML), 2022

Outline

- 1. Background
- 2. Tensor learning via Bayesian Inference
- 3. Dynamics in Tensor (ICML 2022 oral paper)
- 4. Sparsity in Tensor(UAI & ICML 2021 paper)

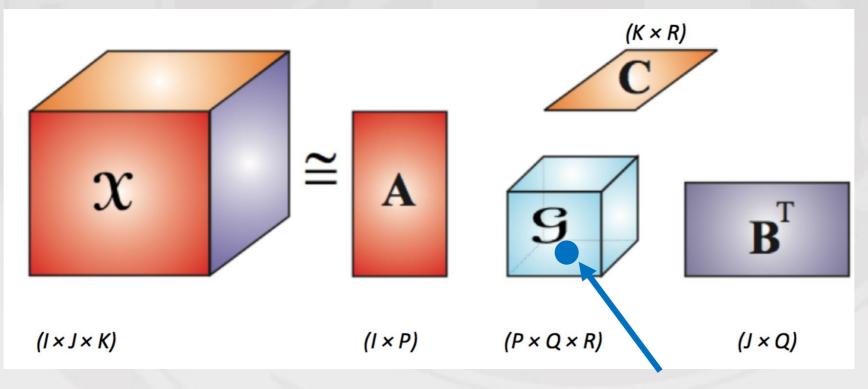
Shikai Fang, Akil Narayan, Robert M. Kirby, and Shandian Zhe, "Bayesian Continuous-Time Tucker Decomposition" (Oral), The 39th International Conference on Machine Learning (ICML), 2022

Tucker Decomposition

• 2-D matrix => N-D tensor

• Element-wise interaction => all possible interactions

Tucker Decomposition



One interaction weight

Element-wise form for a K-mode tensor Y:

Image from https://iksinc.online/2018/05/02/understanding-tensors-and-tensor-decompositions-part-3/.

Challenge: Temporal info in Tensor

What about each entry is time-dependent?

Straightforward Solution:

Drop time or

 $X_{ijk}(t)$

 Augment tensor with time-step mode

$(I \times J \times K)$

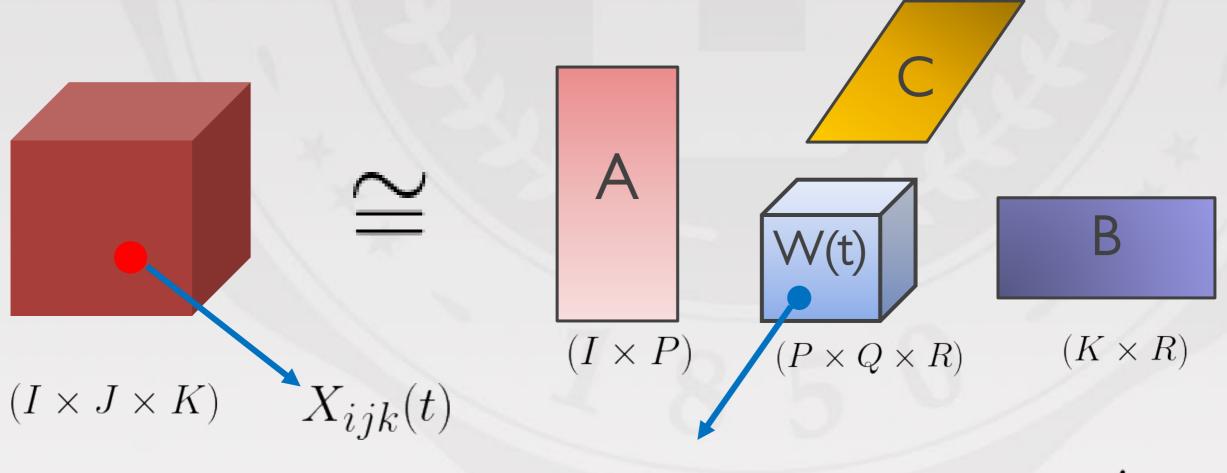
Problem:

- 1. Too Sparse
- 2. Ignore the temporary continuity

 $(I \times J \times K \times T)$

t2

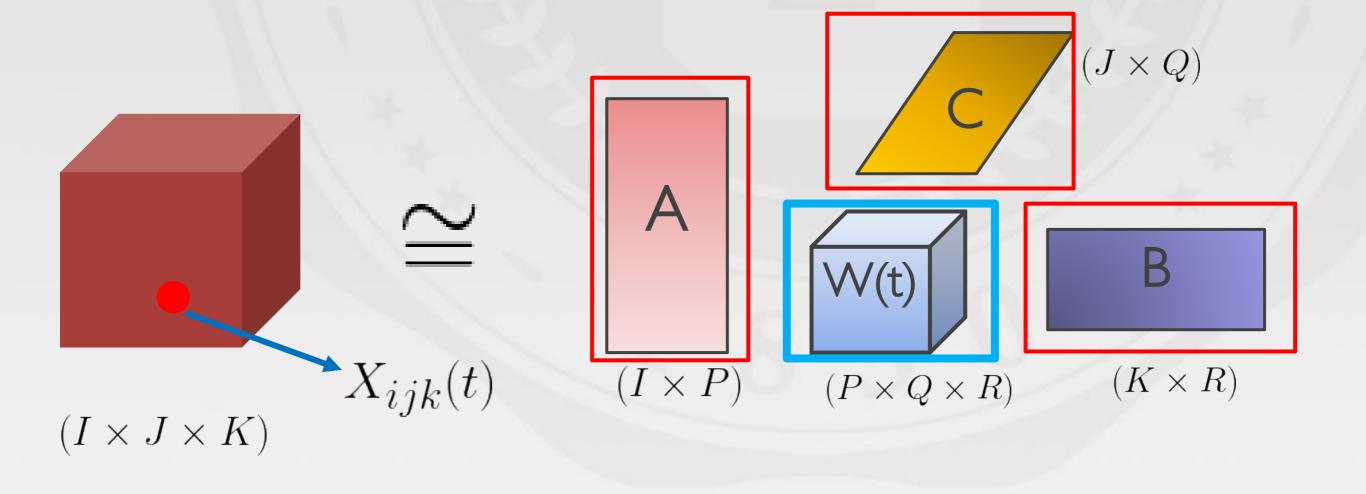
Our Solution: Modeling <u>Dynamic Tucker Core</u> by <u>Temporal Gaussian Processes</u>



 $W_{pqr}(t) \sim GP(0, k(t, t'))$

 $(J \times Q)$

High-level Motivation: <u>Decouple</u> the representation learning of factors and the capture of dynamic pattern



Joint Probability:

$$\begin{array}{l} p\left(\mathcal{U}, \left\{\mathbf{w}_{\mathbf{r}}\right\}_{\mathbf{r}}, \tau, \mathbf{y}\right) = \\ \operatorname{Gam}\left(\tau \mid b_{0}, c_{0}\right) \prod_{k=1}^{K} \prod_{j=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{j}^{k} \mid \mathbf{0}, \mathbf{I}\right) \times \prod_{\mathbf{r}=(1,...,1)}^{R_{1},...,R_{K}} \mathcal{N}\left(\mathbf{w}_{\mathbf{r}} \mid \mathbf{0}, \mathbf{K}_{\mathbf{r}}\right) \times \end{array}$$

Priors of factors and noise

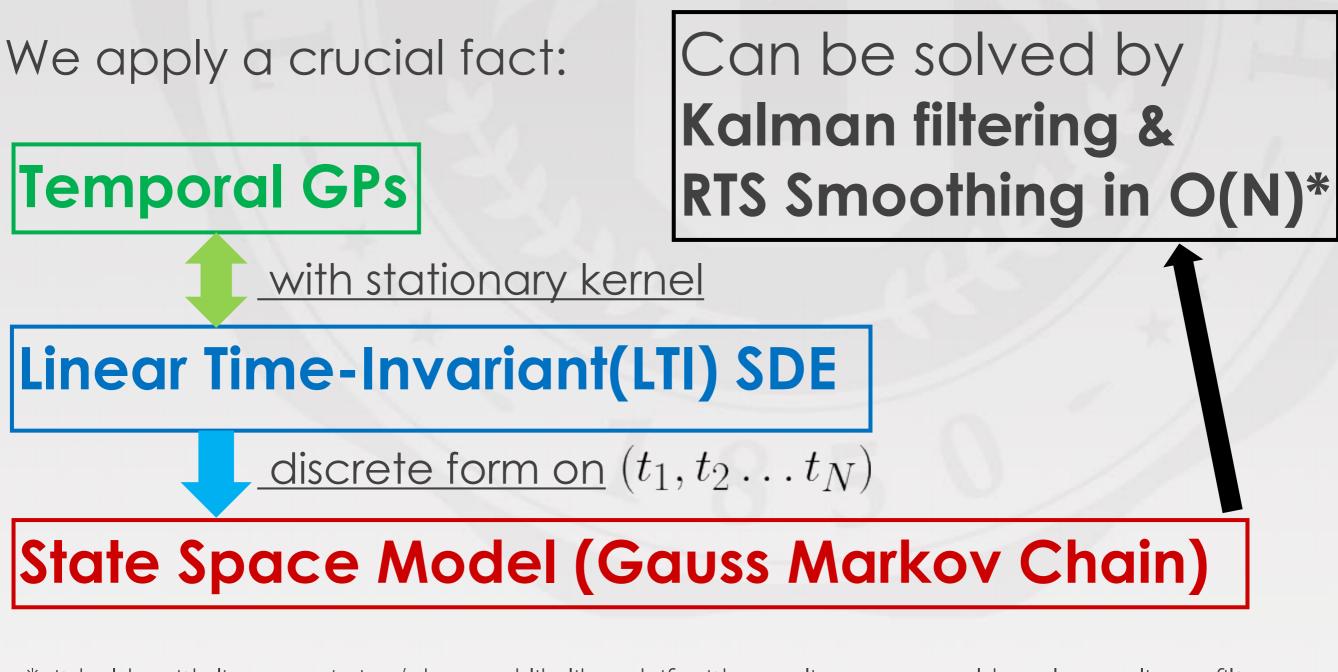
Temporal GPs on Tucker Core

$$\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \operatorname{vec}\left(\mathcal{W}\left(t_{n}\right)\right)^{\top}\left(\mathbf{u}_{i_{n_{1}}}^{1} \otimes \ldots \otimes \mathbf{u}_{i_{n_{K}}}^{K}\right), \tau^{-1}\right)$$

Gaussian Likelihood

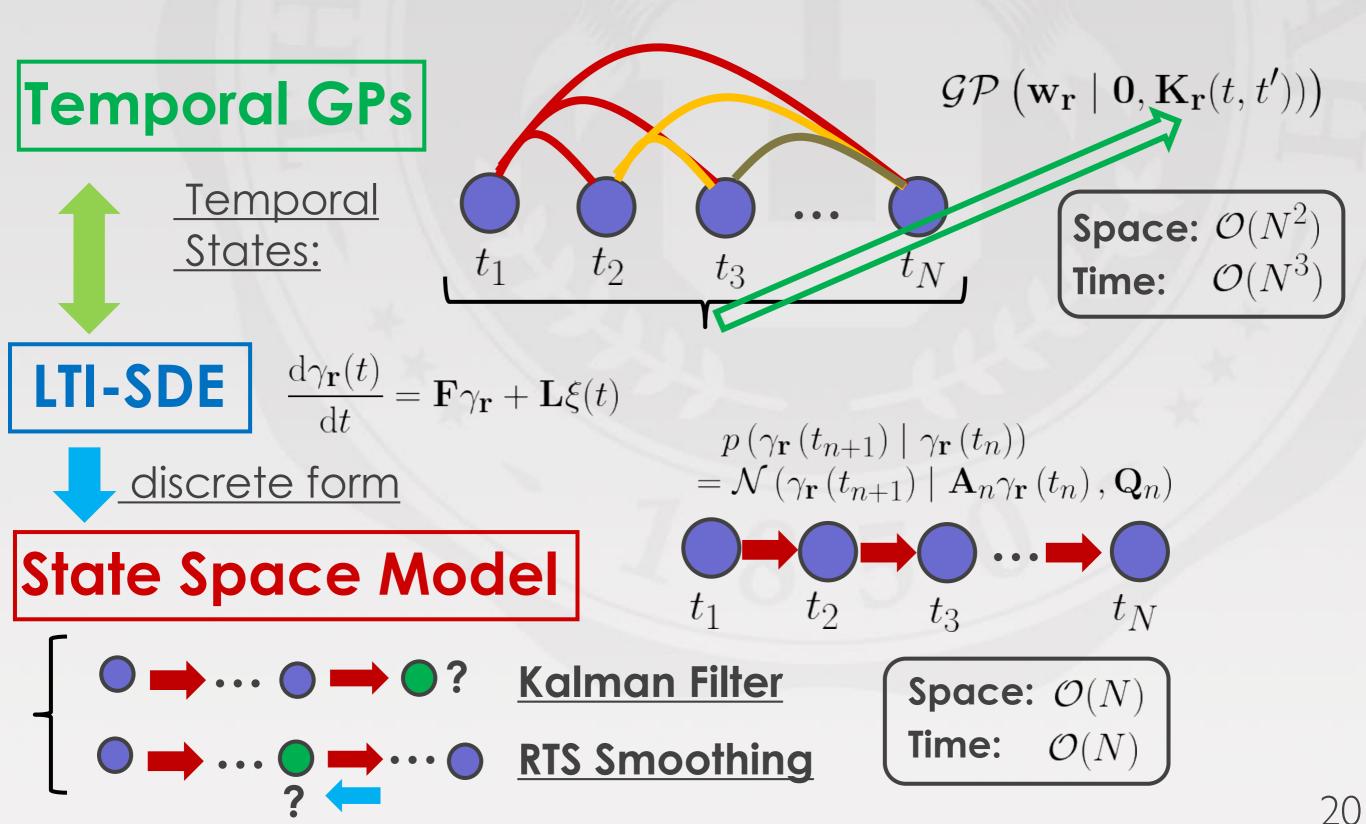
Computational challenge: O(N^3) cost of full GPs

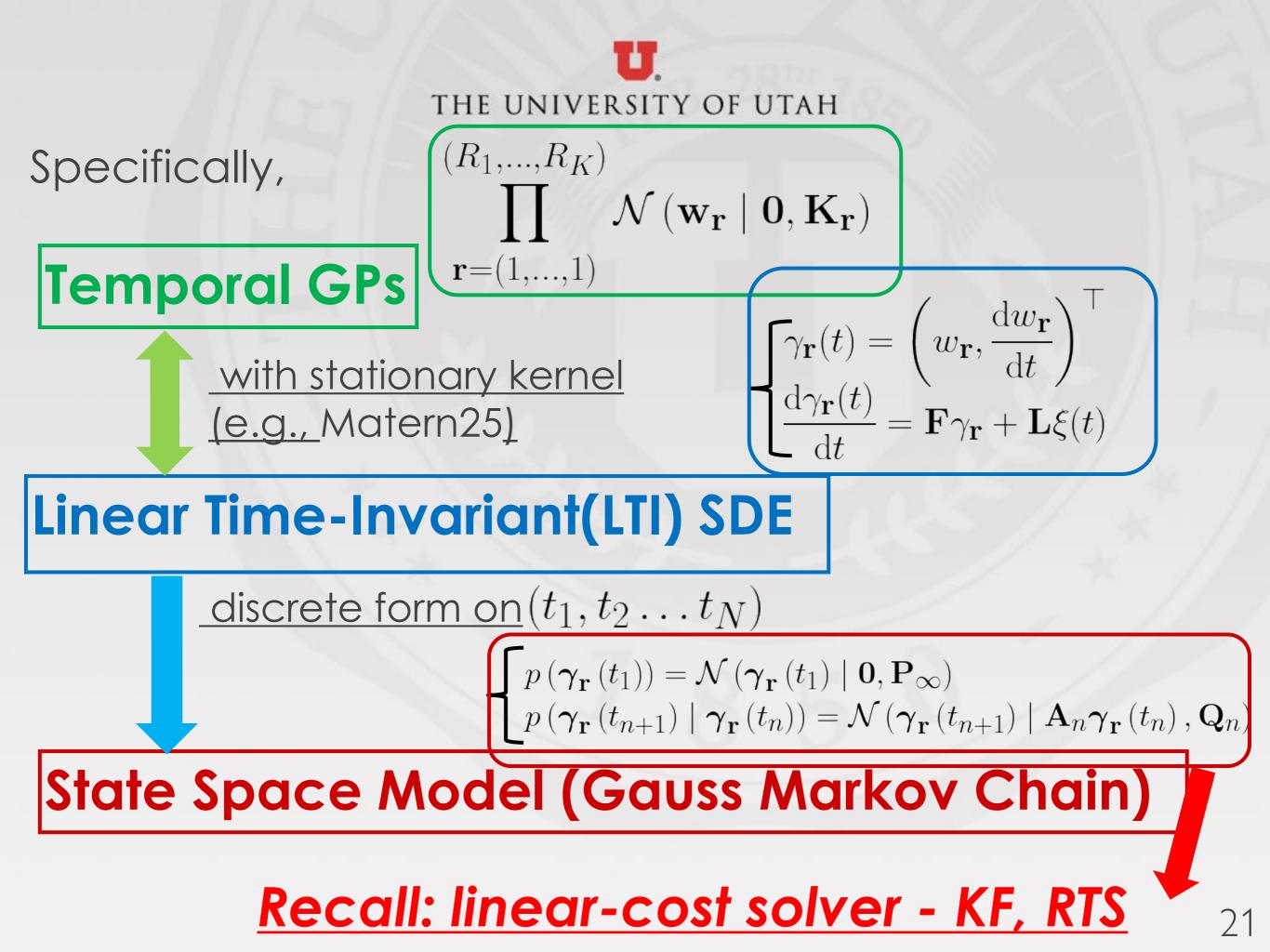
To avoid low-rank/sparse approx. (low quality), but enjoy linear-cost inference of full GPs,



*: it holds with linear emission/observed likelihood, if with non-linear, we could apply non-linear filter and smoothing 19

Illustration of computation cost:





Reformulate Tucker core with State Space Priors

$$p(\bar{\gamma}_1) \prod_{n=1}^{N-1} p(\bar{\gamma}_{n+1} \mid \bar{\gamma}_n)$$

We post Gaussian-Gamma Approx. to fit each data-llk $\mathcal{N}\left(y_n \mid (\mathbf{H}\bar{\gamma}_n)^\top \left(\mathbf{u}_{i_{n_1}}^1 \otimes \ldots \otimes \mathbf{u}_{i_nK}^K\right), \tau^{-1}\right) \approx$ $Z_n \prod_{k=1}^K \mathcal{N}\left(\mathbf{u}_{i_{n_k}}^k \mid \mathbf{m}_{i_{n_k}}^{k,n}, \mathbf{V}_{i_{n_k}}^{k,n}\right) \cdot \operatorname{Gam}\left(\tau \mid b_n, c_n\right) \text{Approx. Msg of Factors & noise}$ $\times \mathcal{N}\left(\mathbf{H}\bar{\gamma}_n \mid \boldsymbol{\beta}_n, \mathbf{S}_n\right) \quad \text{Approx. Msg of SDE states} \text{/Tucker core}$

Substitute these into joint prob.

The proposed approx. posterior is:

$$q\left(\mathcal{U},\left\{\bar{\gamma}_{n}\right\},\tau\right) \propto \prod_{k=1}^{K} \prod_{j=1}^{d_{k}} \mathcal{N}\left(\mathbf{u}_{j}^{k} \mid \mathbf{0},\mathbf{I}\right) \operatorname{Gam}\left(\tau \mid b_{0},c_{0}\right)$$
Standard moment match? Infeasible!

$$\prod_{n=1}^{N} \prod_{k=1}^{K} \mathcal{N}\left(\mathbf{u}_{i_{n_{k}}}^{k} \mid \mathbf{m}_{i_{n_{k}}}^{k,n}, \mathbf{V}_{i_{n_{k}}}^{k,n}\right) \operatorname{Gam}\left(\tau \mid b_{n},c_{n}\right)$$

$$p\left(\bar{\gamma}_{1}\right) \mathcal{N}\left(\mathbf{H}\bar{\gamma}_{1} \mid \boldsymbol{\beta}_{1}, \mathbf{S}_{1}\right) \prod_{n=1}^{N-1} p\left(\bar{\gamma}_{n+1} \mid \bar{\gamma}_{n}\right) \mathcal{N}\left(\mathbf{H}\bar{\gamma}_{n} \mid \boldsymbol{\beta}_{n}, \mathbf{S}_{n}\right)$$
SDE states: Solve by KF and RTS Apply conditional moment matching and delta method!

Conditional Moment Match

$$\mathbb{E}_{\widetilde{p}}[\phi(\boldsymbol{\eta}_n)] = \mathbb{E}_{\widetilde{p}(\Theta_{\backslash \eta_n})} \left[\mathbb{E}_{\widetilde{p}(\boldsymbol{\eta}_n | \Theta_{\backslash \eta_n})} \left[\phi(\boldsymbol{\eta}) \mid \Theta_{\backslash \boldsymbol{\eta}_n} \right] \right]$$

• Delta method:

$$\mathbb{E}_{q\left(\Theta_{\backslash \eta_{n}}\right)}\left[\boldsymbol{\rho}_{n}\right] \approx \rho_{n}\left(\mathbb{E}_{q}\left[\boldsymbol{\Theta}_{\backslash \boldsymbol{\eta}_{n}}\right]\right)$$

Enable **tractable moment matching** to update approx. probability terms under Expectation Propagation(EP) framework

Algorithm 1 BCTT

Input: $\mathcal{D} = \{(\mathbf{i}_1, t_1, y_1), \dots, (\mathbf{i}_N, t_N, y_N)\}, \text{ kernel hyper-parameters } l, \sigma^2$

Initialize approximation terms in (10) for each likelihood. **repeat**

Run KF and RTS smoothing to compute each $q(\overline{\gamma}_n)$ for n = 1 to N in parallel do

Simultaneously update $\mathcal{N}(\mathbf{H}\overline{\gamma}_{n}|\boldsymbol{\beta}_{n}, \mathbf{S}_{n})$, $Gam(\tau|b_{n}, c_{n})$ and $\left\{\mathcal{N}\left(\mathbf{u}_{i_{n_{k}}}^{k}|\mathbf{m}_{i_{n_{k}}}^{k,n}, \mathbf{V}_{i_{n_{k}}}^{k,n}\right)\right\}_{k}$ in (10) with conditional moment matching and multi-variate delta method.

end for

until Convergence

Return: $\{q(\mathcal{W}(t_n))\}_{n=1}^N, \{q(\mathbf{u}_j^k)\}_{1 \le k \le K, 1 \le j \le d_k}, q(\tau)$

Time cost: $\mathcal{O}(N\bar{R})$ **Space cost:** $\mathcal{O}\left(N\left(\bar{R}^2 + \sum_{k=1}^K R_k^2\right)\right)$

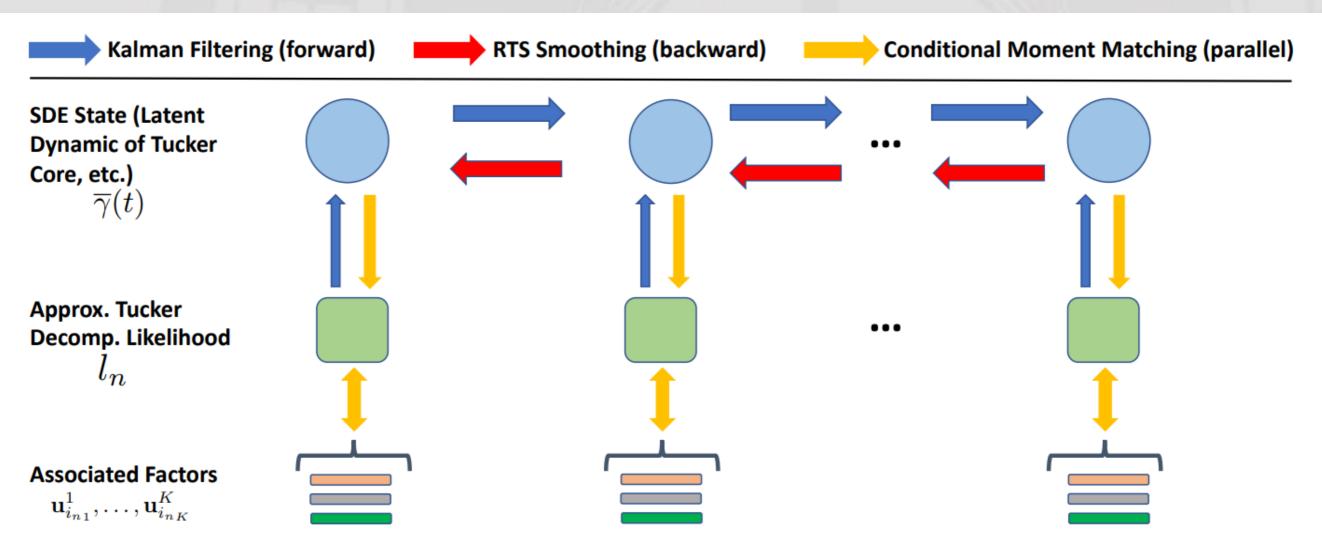
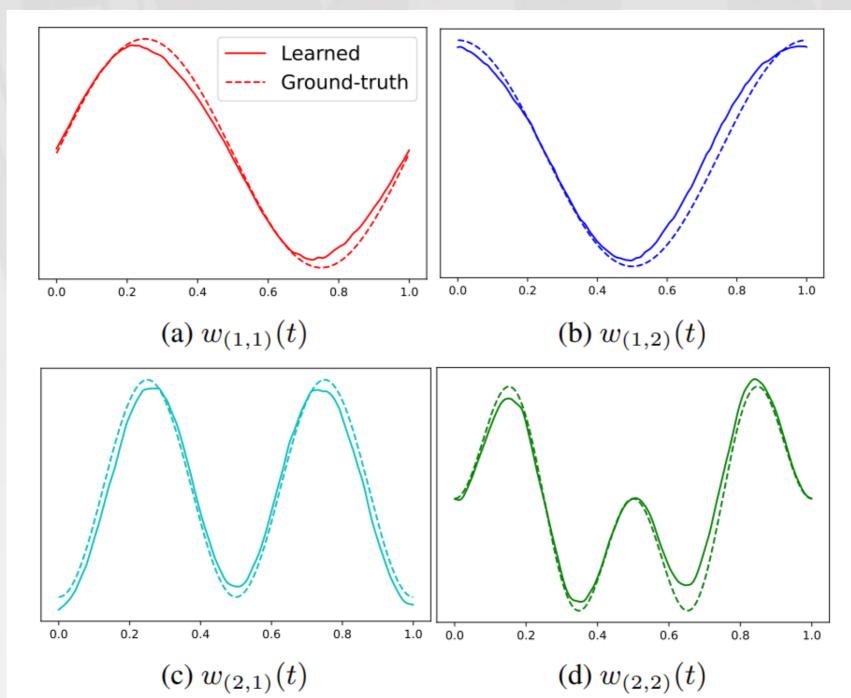


Figure 1. Graphical illustration of the message-passing inference algorithm.

Can BCTT capture the temporal patterns in tensor?

- Exp on simulation data
- Plot the dynamics of Tucker core



27

Can BCTT capture the temporal patterns in tensor?

- Exp on real-world data(DBLP dataset)
- Scatter low-rank structures of Tucker core

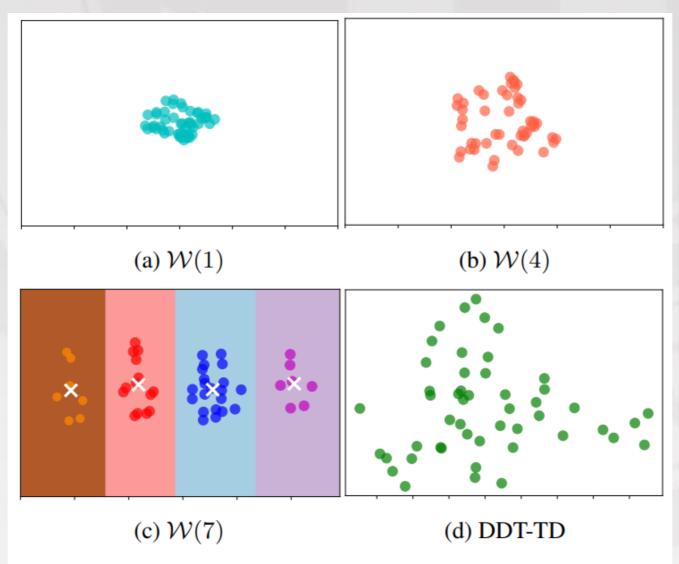


Figure 4. The structures of learned tensor-core at different time points by BCTT (a-c) and the static tensor-score learned by dynamic discrete-time Tucker decomposition (DDT-TD).

U. The University of Utah

Prediction with BCTT

• Prediction performance of BCTT on 3 real-world data

RMSE	MovieLens	AdsClicks	DBLP	RMSE	MovieLens	AdsClicks	DBLP
CT-CP	1.113 ± 0.004	1.337 ± 0.013	0.240 ± 0.007	CT-CP	1.165 ± 0.008	1.324 ± 0.013	0.263 ± 0.0
CT-GP	0.949 ± 0.008	1.422 ± 0.008	0.227 ± 0.009	CT-GP	0.965 ± 0.019	1.410 ± 0.015	0.227 ± 0.0
DT-GP	0.963 ± 0.008	1.436 ± 0.015	0.227 ± 0.007	DT-GP	0.949 ± 0.007	1.425 ± 0.015	0.225 ± 0.00
DDT-GP	0.957 ± 0.008	1.437 ± 0.010	0.225 ± 0.006	DDT-GP	0.948 ± 0.005	1.421 ± 0.012	0.220 ± 0.00
DDT-CP	1.022 ± 0.003	1.420 ± 0.020	0.245 ± 0.004	DDT-CP	1.141 ± 0.007	1.623 ± 0.013	0.282 ± 0.02
DDT-TD	1.059 ± 0.006	1.401 ± 0.022	0.232 ± 0.09	DDT-TD	0.944 ± 0.003	1.453 ± 0.035	$0.312\pm0.0^{\prime}$
BCTT	0.922 ± 0.002	1.322 ± 0.012	0.214 ± 0.009	BCTT	0.895 ± 0.007	1.304 ± 0.018	0.202 ± 0.0
MAE				MAE			
CT-CP	0.788 ± 0.004	0.787 ± 0.006	0.105 ± 0.001	CT-CP	0.835 ± 0.006	0.792 ± 0.007	0.128 ± 0.00
CT-GP	0.714 ± 0.004	0.891 ± 0.011	0.092 ± 0.004	CT-GP	0.717 ± 0.012	0.883 ± 0.016	0.092 ± 0.0
DT-GP	0.722 ± 0.008	0.893 ± 0.008	0.084 ± 0.003	DT-GP	0.714 ± 0.005	0.886 ± 0.012	0.084 ± 0.00
DDT-GP	0.720 ± 0.003	0.894 ± 0.009	0.083 ± 0.001	DDT-GP	0.707 ± 0.004	0.882 ± 0.015	0.082 ± 0.00
DDT-CP	0.755 ± 0.002	0.901 ± 0.011	0.114 ± 0.002	DDT-CP	0.843 ± 0.003	1.082 ± 0.013	0.141 ± 0.00
DDT-TD	0.742 ± 0.006	0.866 ± 0.012	0.101 ± 0.001	DDT-TD	0.712 ± 0.002	0.903 ± 0.024	0.221 ± 0.04
BCTT	0.698 ± 0.002	0.777 ± 0.016	0.084 ± 0.001	BCTT	0.679 ± 0.001	0.785 ± 0.010	0.080 ± 0.0

(a) R = 3

(b) R = 7

Outline

- 1. Background
- 2. Tensor learning via Bayesian Inference
- 3. Dynamics in Tensor (ICML 2022 oral paper)

4. Sparsity in Tensor(UAI & ICML 2021 paper)

Shikai Fang, Zheng Wang, Zhimeng Pan, Ji Liu, and Shandian Zhe, "Streaming Bayesian Deep Tensor Factorization", The Thirty-eighth International Conference on Machine Learning (ICML), 2021

Shikai Fang, Robert. M. Kirby, and Shandian Zhe, "Bayesian Streaming Sparse Tucker Decomposition", The 37th Conference on Uncertainty in Artificial Intelligence (UAI), 2021

• Sparsity in tensor data requires Sparsity in model

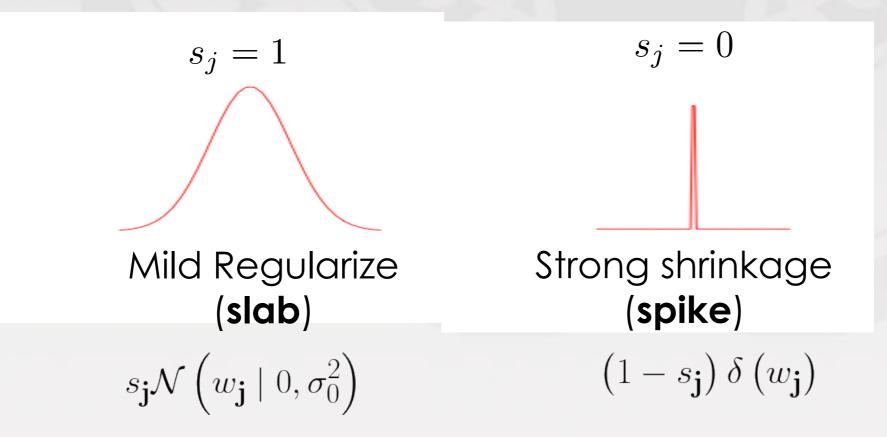
Tensor-Datasets	Size	#Observed entries	Observed Ratio
Gowalla	18737*1000*32510	821,931	0.0001%
SG	2321*5596*1600	105,764	0.0005%
ACC	3000*150*30000	1,220,000	0.1%
Movielens1M	6000*3700	1,000,000	4%

- otherwise, overfitting risk, especially for complex model like NN
- How non-Bayesian people get sparsity?
 --L1 regular terms
 --overall sparse, not accurate enough

How Bayesian people get sparsity?

Spike and Slab Priors

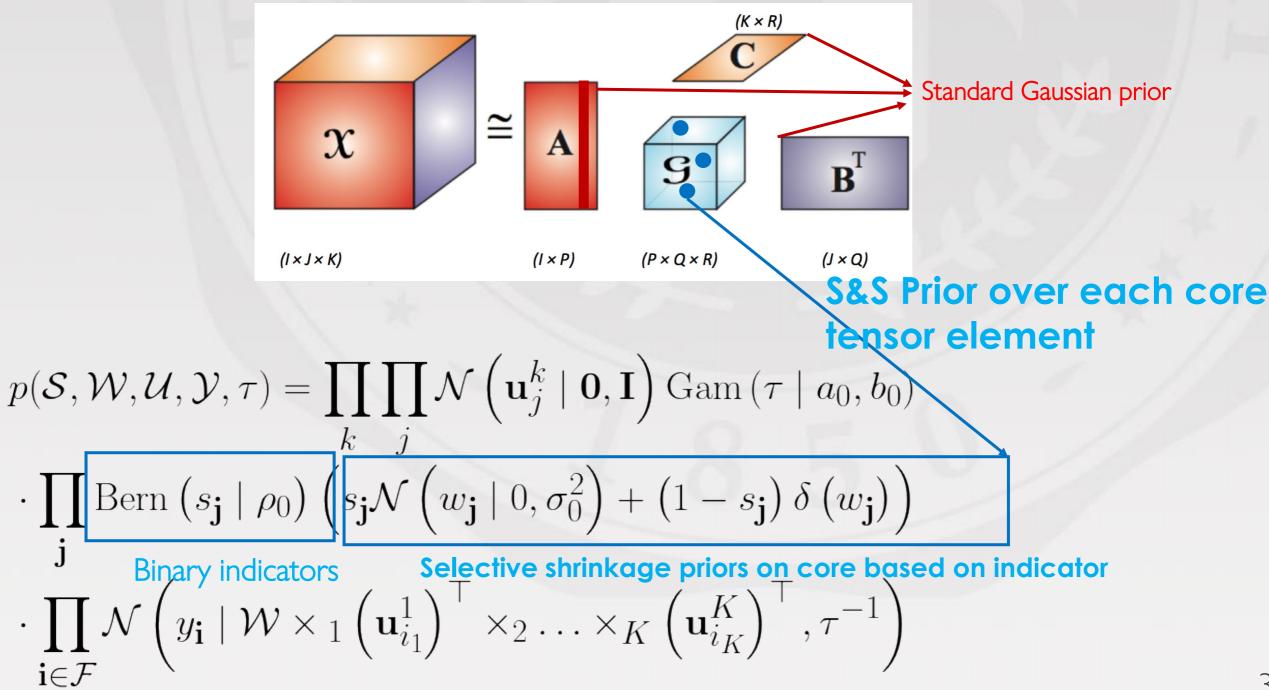
Introduce binary selection indicators s_1, s_2, \ldots, s_d on each parameter ! -- Element-wise sparse control!



Where to put such sparsity?

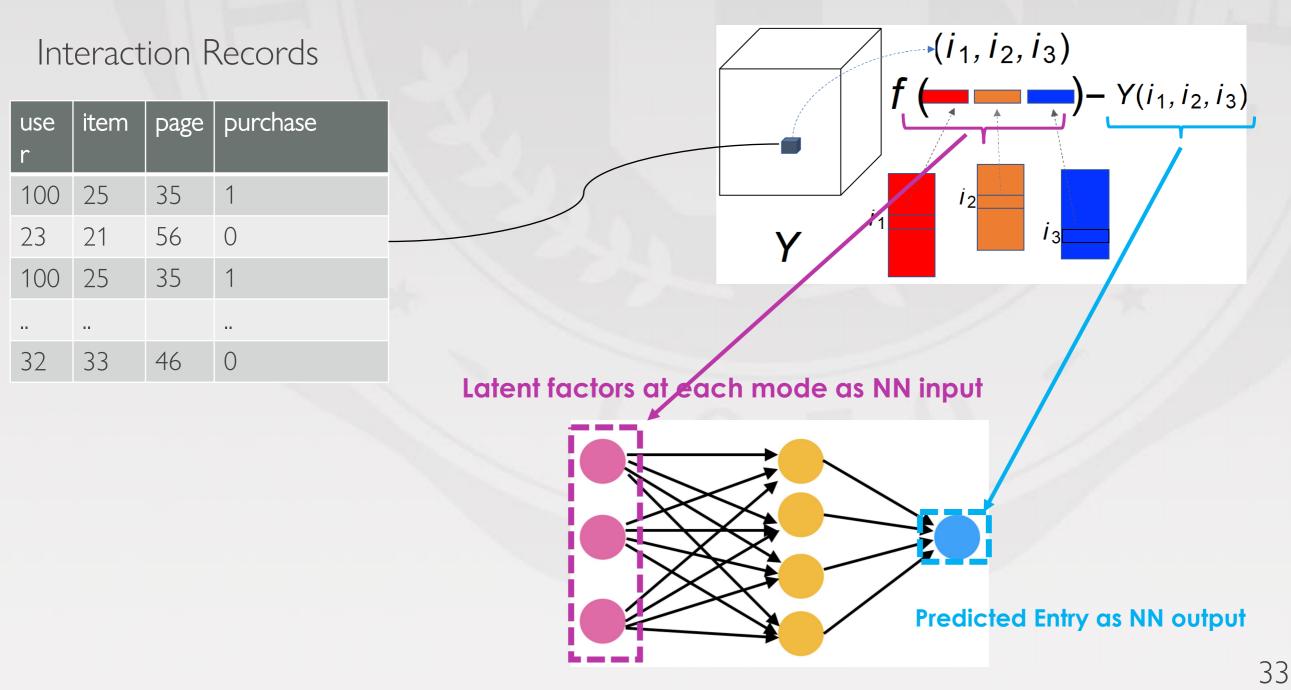
 $\mathbf{i} \in \mathcal{F}$

On Tucker Core-build a sparse core (BASS[4])



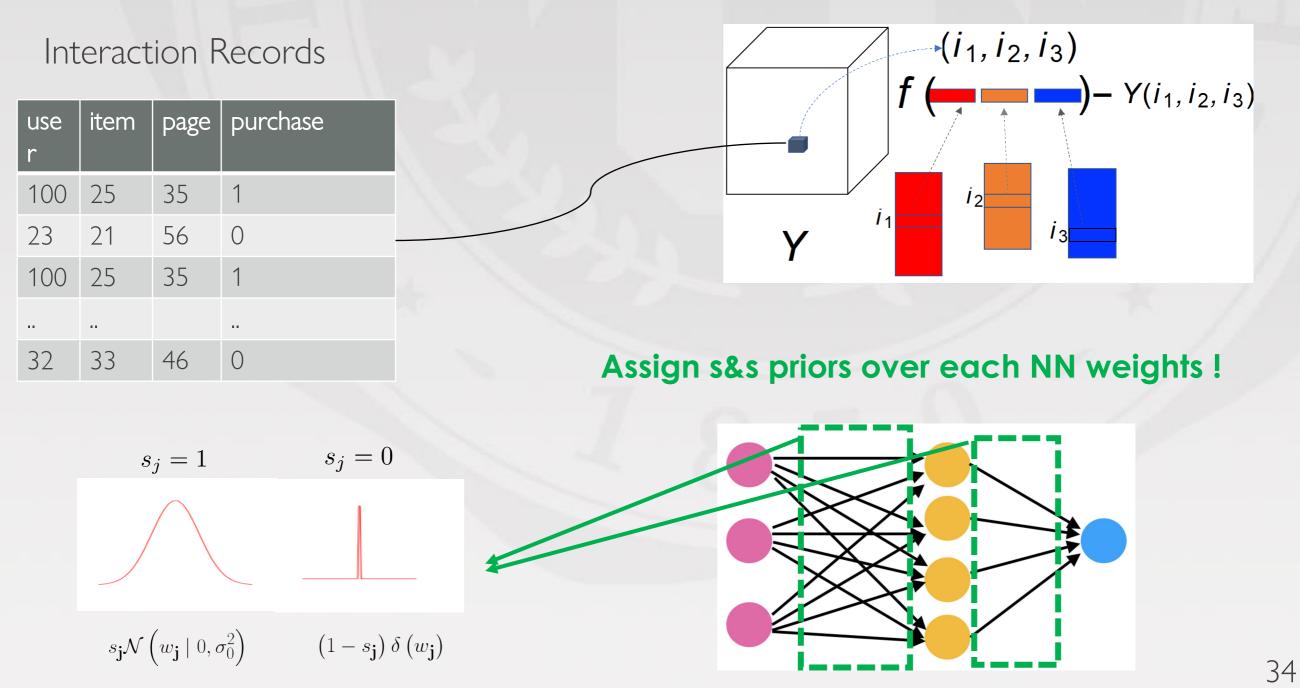
[5] Fang, Shikai, et al. "Bayesian Streaming Sparse Tucker decomposition." Conference on Uncertainty in Artificial Intelligence. UAI, 2021

Where to put such sparsity? On NN weights – build a sparse BNN (SBDT[4])



[4] Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization." The Thirty-eighth International Conference on Machine Learning (ICML), 2021

Where to put such sparsity? On NN weights – build a sparse BNN (SBDT[4])



[4] Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization." The Thirty-eighth International Conference on Machine Learning (ICML), 2021

How the final sparsity exactly look like?

 Approx. of S&S Priors in exponential family: Gaussian + Bernoulli

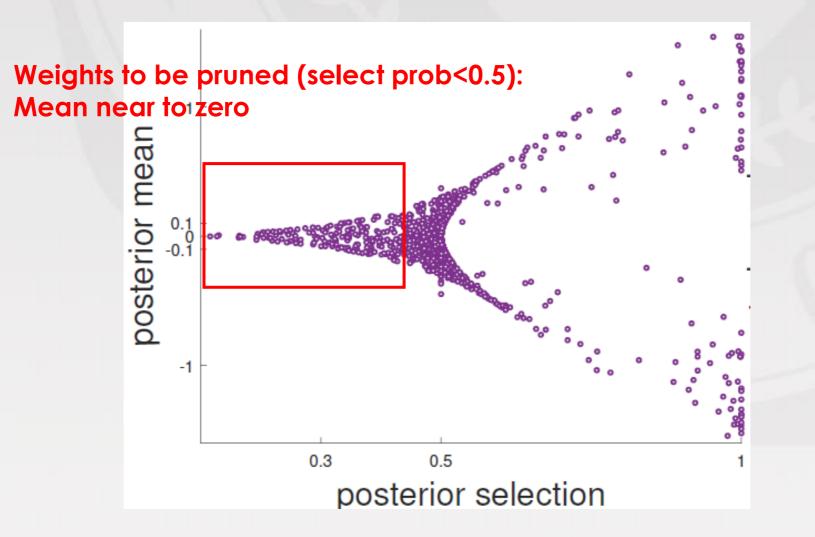
 $p\left(w_{mjt} \mid s_{mjt}\right) \propto A\left(w_{mjt}, s_{mjt}\right)$ $= \operatorname{Bern}\left(s_{mjt} \mid c\left(\rho_{mjt}\right)\right) \mathcal{N}\left(w_{mjt} \mid \mu_{mjt}^{0}, v_{mjt}^{0}\right)$

Select posterior prob of each weight <0.5: unselected <=> sparse

• How sparse can model get? – Light model

For SBDT work (Sparse BNN as factorization model)

- Plot of sparse-BNN weights after training
- Each weight has its posterior mean, var and selection prob.



36

- How sparse can model get? Interpretability
 For BASS work (Tucker with Sparse core as factorization model)
- Plot of projected Tucker core elements with sparsity
- Significant structure of interactions

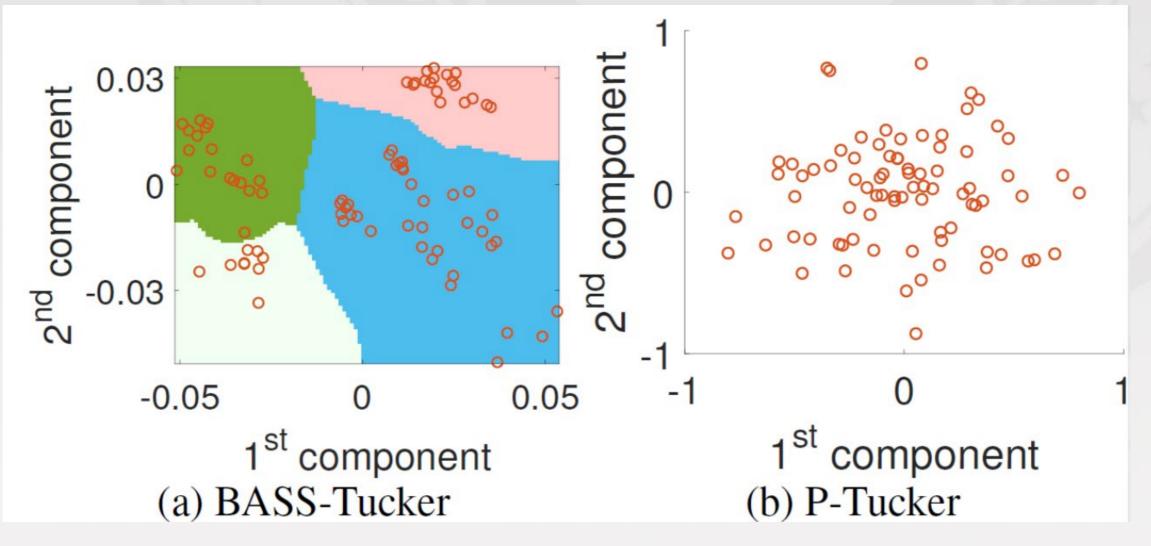


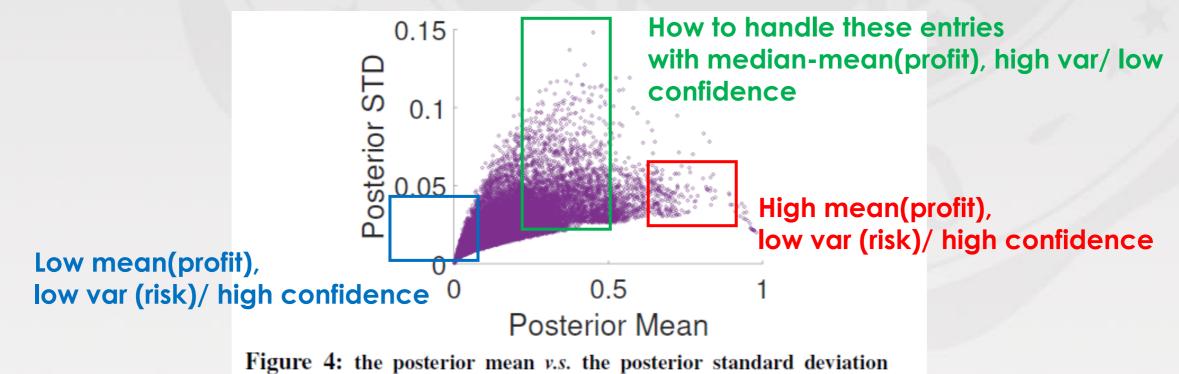
Image: Fang, Shikai, et al. "Bayesian Streaming Sparse Tucker decomposition." Conference on Uncertainty in Artificial Intelligence. UAI, 2021.

36

How to make use of quantized uncertainty?

An example in ad-recommend system

- plots of model predictions on CTR(click-through-rate) tensor dataset
- exploration and exploitation, optimization policy for down steaming tasks



(STD) of the click probability prediction.

Image from Conor Tillinghast, Shikai Fang, Kai Zheng, and Shandian Zhe, "Probabilistic Neural-Kernel Tensor Decomposition", IEEE International Conference on Data 37 Mining (ICDM), 2020.

Open questions for Cooperation

- Domain knowledge embedded in prior
- Make good use of the uncertainty measure
- Challenges and inspiration from real world

Domain model(PDE/SDE) + Al4Science + new algos...

Thanks for attention Q&A Time

Presenter' email: shikai.fang@utah.edu

Webpage: https://www.cs.utah.edu/~shikai/

Focus: Bayesian machine learning, tensor learning

知乎:方轩固