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Tensor Data: Widely Used High-Order Data Structures 
to Represent Interactions of Multiple Objects/Entities

(location, region, time, climate)

(subject, voxel, electrode)(user, advertisement, page-section)

(patient, gene, condition)

(user, movie, episode)
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(user, location, message-type)



Tensor Decomposition:  estimate latent factors to 
reconstruct tensor with observed entries   

Image from https://www.slideshare.net/hontolab/matrix-factorization-192159058
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•Simple case:
Collaborative Filtering (Matrix Factorization) 



Image from https://www.slideshare.net/hontolab/matrix-factorization-192159058

Rating of 
M3, U4

Factor of M3

Factor of U4

M3

U4

Element-wise product, then sum!
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Tensor Decomposition:  estimate latent factors to 
reconstruct tensor with observed entries   

•Simple case:
Collaborative Filtering (Matrix Factorization) 



From matrix to tensor: CP decomposition 

•Example of three-mode tensor: 

Image from Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3), 455-500.

Interaction Records
user item page purchase

100 25 35 1

23 21 56 0

100 25 35 1

.. .. ..

32 33 46 0

1/0

Element-wise product, then sum!
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• Make latent factor from variable to a distribution 

• Turns Deterministic model -> Bayesian model

Deterministic version:
Probabilistic version: 

Image from Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3), 455-500.

Uncertainty really counts!
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• Bayesian version for CP decomposition, 
• the joint distribution is: 

Observed data, factors, noise Prior of the noise Gauss Prior of latent factors

Gauss likelihood of the prediction 

Distribution of data, Constant, we never know!! 

Final goal : Get the exact posterior distribution :
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• Exact posterior distribution p is always intractable
• Approximation it by a tractable distribution: q

Parameters needed to be optimized 
to make the approximation accurate !!  

Become a problem of distribution match !
9



• Key point in Bayesian machine learning

• Complete toolbox, but no silver bullet.
• Depend on the model f picked for the likelihood
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Most-frequently used tool: 
Variational inference(VI): minimize the KL divergence 
of two distributions

• Expectation propagation(EP): 
moment match when L(reverse order) has closed form solution

• Assumed density filtering(ADF): 
moment match when having tractable normalization term

• Reparameterization trick (SVI): 
Probabilistic version SGD when L is totally intractable
…(sampling based methods) 11



Series of work from our group under such architecture.
Short Names Likelihood Model & Prior Inference 

Method
Publication

POST[1] CP decomposition/multi-
linear

EP ICDM 2018 

POND[2] Neural-kernel Gaussian 
process

SVI ICDM 2020 

SBTD[3] Bayesian neural network + 
Sparse

ADF (Streaming) ICML 2021

BASS[4] Tucker decomposition + 
Sparse

ADF (Streaming) UAI 2021

BCTT[5] Tucker decomposition + 
Dynamics

CEP + KF/RTS ICML 2022

[1]Du, Yishuai, et al. "Probabilistic streaming tensor decomposition." 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 2018.
[2]Conor Tillinghast, Shikai Fang, Kai Zheng, and Shandian Zhe, “Probabilistic Neural-Kernel Tensor Decomposition”, IEEE International 
Conference on Data Mining (ICDM), 2020.
[3] Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization.“ The Thirty-eighth International Conference on Machine Learning 
(ICML), 2021
[4] Fang, Shikai, et al. “Bayesian Streaming Sparse Tucker decomposition.“Conference on Uncertainty in Artificial Intelligence. UAI, 2021.
[5] Fang, Shikai, et al. “Bayesian Continues-Time Tucker Decomposition.“ The Thirty-ninth International Conference on Machine Learning 
(ICML), 2022 12
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Shikai Fang, Akil Narayan, Robert M. Kirby, and Shandian Zhe, “Bayesian 
Continuous-Time Tucker Decomposition“ (Oral), The 39th International Conference 
on Machine Learning (ICML), 2022
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• 2-D matrix => N-D tensor 

• Element-wise interaction => all possible interactions

Tucker Decomposition



Tucker Decomposition

Image from https://iksinc.online/2018/05/02/understanding-tensors-and-tensor-decompositions-part-3/.

Element-wise form for 
a K-mode tensor Y: 

One interaction weight

One Interaction 
of latent factors
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Challenge: Temporal info in Tensor 

Straightforward Solution: 
• Drop time or
• Augment tensor with 

time-step mode 

What about each entry is time-dependent? 

t1

t2

tT

Problem:
1. Too Sparse 
2. Ignore the temporary 

continuity   15



W(t)

Our Solution: Modeling Dynamic Tucker Core  
by Temporal Gaussian Processes 

A
B

C
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W(t)

High-level Motivation:
Decouple the representation learning of factors 

and the capture of dynamic pattern 

A
B

C
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Joint Probability: 

Priors of factors and noise

Gaussian Likelihood

Temporal GPs on Tucker Core

Computational challenge: O(N^3) cost of full GPs 
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To avoid low-rank/sparse approx. (low quality),
but enjoy linear-cost inference of full GPs,

We apply a crucial fact:   

Temporal GPs

Linear Time-Invariant(LTI) SDE 

State Space Model (Gauss Markov Chain)

with stationary kernel 

discrete form on      

Can be solved by 
Kalman filtering & 
RTS Smoothing in O(N)*

*: it holds with linear emission/observed likelihood, if with non-linear, we could apply non-linear filter 
and smoothing 19



Illustration of computation cost:

Temporal GPs

LTI-SDE 

State Space Model

…Temporal
States:
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Space:
Time:

…

Space:
Time:

discrete form

…
?

?

…
…

Kalman Filter

RTS Smoothing



Specifically, 

Temporal GPs

Linear Time-Invariant(LTI) SDE 

State Space Model (Gauss Markov Chain)

with stationary kernel
(e.g., Matern25) 

discrete form on      

Recall: linear-cost solver - KF, RTS  21



Reformulate Tucker core with State Space Priors

We post Gaussian-Gamma Approx. to fit each data-llk

Substitute these into joint prob. 

Approx. Msg of 
Factors & noise

Approx. Msg of SDE states
/Tucker core
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The proposed approx. posterior is: 

SDE states: Solve by KF and RTS

Standard moment match? Infeasible!

23
Apply conditional moment matching and delta method! 



• Conditional Moment Match

• Delta method: 

Enable tractable moment matching
to update approx. probability terms under 

Expectation Propagation(EP) framework
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Time cost: Space cost: 
25
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Can BCTT capture the temporal patterns in tensor? 
• Exp on simulation data 
• Plot the dynamics of Tucker core
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Can BCTT capture the temporal patterns in tensor? 

• Exp on real-world data(DBLP dataset)
• Scatter low-rank structures of Tucker core
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Prediction with BCTT
• Prediction performance of BCTT on 3 real-world data
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Shikai Fang, Robert. M. Kirby, and Shandian Zhe, “Bayesian Streaming Sparse Tucker 
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• Sparsity in tensor data requires Sparsity in model

• otherwise, overfitting risk, especially for complex 
model like NN

Tensor-Datasets Size #Observed entries Observed Ratio

Gowalla 18737*1000*32510 821,931 0.0001%

SG 2321*5596*1600 105,764 0.0005%

ACC 3000*150*30000 1,220,000 0.1%

Movielens1M 6000*3700 1,000,000 4%

• How non-Bayesian people get sparsity? 
--L1 regular terms
--overall sparse, not accurate enough 30



How Bayesian people get sparsity? 

• Spike and Slab Priors

Introduce binary selection indicators
on each parameter !  -- Element-wise sparse control!

Mild Regularize 
(slab) 

Strong shrinkage 
(spike)
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Where to put such sparsity?  
• On Tucker Core– build a sparse core (BASS[4])

[5] Fang, Shikai, et al. “Bayesian Streaming Sparse Tucker decomposition.“Conference on Uncertainty in Artificial Intelligence. UAI, 2021

Binary indicators Selective shrinkage priors on core based on indicator 

Standard Gaussian prior

S&S Prior over each core 
tensor element
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Where to put such sparsity?  
• On NN weights – build a sparse BNN (SBDT[4])

[4] Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization.“ The Thirty-eighth International Conference on Machine Learning (ICML), 2021

Latent factors at each mode as NN input 

use
r

item page purchase

100 25 35 1

23 21 56 0

100 25 35 1

.. .. ..

32 33 46 0

Interaction Records

Predicted Entry as NN output 
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Where to put such sparsity?  
• On NN weights – build a sparse BNN (SBDT[4])

[4] Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization.“ The Thirty-eighth International Conference on Machine Learning (ICML), 2021

use
r

item page purchase

100 25 35 1

23 21 56 0

100 25 35 1

.. .. ..

32 33 46 0

Interaction Records

Assign s&s priors over each NN weights !
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• Approx. of S&S Priors in exponential family: 
Gaussian + Bernoulli 

How the final sparsity exactly look like? 

Select posterior prob of each weight 
<0.5: unselected <=> sparse
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• How sparse can model get? – Light model

For SBDT work (Sparse BNN as factorization model)

Image” Fang, Shikai, et al. "Streaming Probabilistic Deep Tensor Factorization.“ The Thirty-eighth International Conference on Machine Learning (ICML), 2021

• Plot of sparse-BNN weights after training
• Each weight has its posterior mean, var and selection prob.

Weights to be pruned (select prob<0.5):
Mean near to zero  

36



• How sparse can model get? – Interpretability  
For BASS work (Tucker with Sparse core as factorization model)

Image: Fang, Shikai, et al. “Bayesian Streaming Sparse Tucker decomposition.“Conference on Uncertainty in Artificial Intelligence. UAI, 2021.

• Plot of projected Tucker core elements with sparsity
• Significant structure of interactions 

36



An example in ad-recommend system
• plots of model predictions on CTR(click-through-rate) 

tensor dataset

• exploration and exploitation, optimization policy for down 
steaming tasks 

Image from Conor Tillinghast, Shikai Fang, Kai Zheng, and Shandian Zhe, “Probabilistic Neural-Kernel Tensor Decomposition”, IEEE International Conference on Data 
Mining (ICDM), 2020.

How to make use of quantized uncertainty? 

High mean(profit), 
low var (risk)/ high confidence 

Low mean(profit), 
low var (risk)/ high confidence 

How to handle these entries 
with median-mean(profit), high var/ low 
confidence
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Open questions for Cooperation 

• Domain knowledge embedded in prior

• Make good use of the uncertainty measure

• Challenges and inspiration from real world

• …

Domain model(PDE/SDE) + AI4Science + new algos…
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Thanks for attention
Q&A Time

Presenter’ email: shikai.fang@utah.edu

Webpage: https://www.cs.utah.edu/~shikai/

Focus: Bayesian machine learning, tensor learning

知乎: 方轩固

mailto:shikai.fang@utah.edu
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