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1. Background
• Tucker tensor decomposition: Generalization of the matrix SVD

(also called Hig he r O rde r S ing u la r V a lue  De compos ition (HOSVD))

• d
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Image from https://iksinc.online/2018/05/02/understanding-tensors-and-tensor-decompositions-part-3/.

SVD core:
•2-D diagonal matrix
•only model interactions of 

embeddings on same dim 

https://en.wikipedia.org/wiki/HOSVD


1. Background
• Tucker tensor decomposition: Generalization of the matrix SVD

(also called Hig he r O rde r S ing u la r V a lue  De compos ition (HOSVD))

• Element-wise form for a K-mode tensor Y: 
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Image from https://iksinc.online/2018/05/02/understanding-tensors-and-tensor-decompositions-part-3/.

Tucker core (3-mode example):
•3-d dense tensor
•model all possible interactions of 

embeddings at every dim

Embeddings

Core tensor element: interaction weight

Traverse each dim per mode
One interaction

https://en.wikipedia.org/wiki/HOSVD


1. Background
• Probabilistic/Bayesian version of tucker decomposition:

everything is random variable (distribution)
• For uncertainty measure and robustness 

• Element-wise form for a K-mode tensor Y: 
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All random variables: 
place priors and do inference!



2.  Motivation:
• Classical Tucker tensor decomposition is featured as

I. Flexible: model all possible interactions 
II. Interpretable: core tensor indicates interaction strengths 

but suffers from:
I. Estimating core-tensor is memory & computationally intensive
II. Overparameterizing and Overfitting risk, esp. for sparse data 
III. The two problems are more severe for streaming data!

• Goal
I. Alleviate over-parameterization: automatic selecting meaningful 

interactions
II. Efficient streaming posterior inference
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•Spike and Slab priors : 
Introduce binary selection indicators                  
on each core tensor element !  

Mild Regularize (slab) Strong shrinkage (spike)
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3. Bayesian Sparse Tucker Model 



Binary indicators Selective shrinkage priors on core based on indicator 
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3. Bayesian Sparse Tucker Model 

Standard Gaussian prior

S&S Prior over each core tensor element



• Exact posterior distribution: Intractable!
• Approximation with distributions in exponential family:

where:  

Approximation of SS priors
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3. Bayesian Sparse Tucker Model 

Approximation of data likelihood



• Streaming:  data come, model update, data drops
• Incremental Bayesian rule:  

3. Streaming & One-shot inference

Exact / Approx posterior on old data 
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• Streaming:  data come, model update, data drops
• Incremental Bayesian rule:  

3. Streaming & One-shot inference
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Data likelihood on current model
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• Streaming:  data come, model update, data drops
• Incremental Bayesian rule:  

3. Streaming & One-shot inference

Exact / Approx posterior on all data 
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• Streaming:  data come, model update, data drops
• Incremental Bayesian rule:  

• Classical ADF: integrating data points one by one via moment 
matching --- inefficient (esp for core tensor update); many  
approximations

• Our goal: assimilating a batch of streaming data points at a time: 
-- more efficient and improve the quality

3. Streaming & One-shot inference

Exact / Approx posterior on all data 

Exact / Approx posterior on old data 

Data likelihood on current model
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• For tractable moment in ADF, we made 3 tech-contributions
I. Conditional Expectation Propagation(CEP)

II. Delta method: Expectation on first-order Taylor approximation

III. Repeated update of S&S prior approx. to ensure sparsity inducing effect

3. Streaming & One-shot inference
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Tractable Conditional Moment! 

h : first-order approx. at the mean



• Predictive performance on large real-world datasets
• With different factors / streaming batch size 

5. Experiments on real-world data
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Our method!



• Running prediction large real-world datasets
• With different number of factors

5. Experiments on real-world data
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Our method!



• More significant Core tensor structure

5. Experiments on Real-world Data
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Thanks for attention
Q&A Time

Authors’ email: shikai.fang@utah.edu, {kirby, zhe}@cs.utah.edu

Focus: Probabilistic model, Bayesian machine learning and its application
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