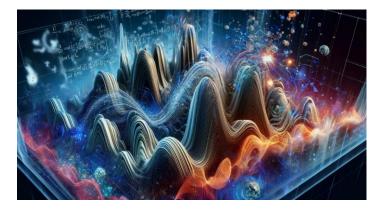


## Solving High Frequency and Multi-Scale PDEs with Gaussian Processes

#### **ICLR 2024**

Shikai Fang\*, Madison Cooley\*, Da Long\*, Shibo Li, Robert M. Kirby, Shandian Zhe \*Presenter: Shikai Fang





Github: github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE



#### ML-based PDE Solver

• General form of PDE

Differential opeartor  

$$\mathcal{F}[u](\mathbf{x}) = f(\mathbf{x}) \quad (\mathbf{x} \in \Omega), \quad \underbrace{u(\mathbf{x})}_{\mathbf{x}} = g(\mathbf{x}) \quad (\mathbf{x} \in \partial\Omega),$$
Equations in domain  
Boundary conditions

- ML slovers of PINN[1] family:
  - Parameterized model (DNN) as the approx. of u:  $\widehat{u}_{\theta}(\mathbf{x}) pprox u_{\theta}(\mathbf{x})$

- Canonical objective func. : 
$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} L_b(\boldsymbol{\theta}) + L_r(\boldsymbol{\theta}),$$
  
Boundary term  
where  $L_b(\boldsymbol{\theta}) = \frac{1}{N_b} \sum_{j=1}^{N_b} \left( \widehat{u}_{\boldsymbol{\theta}}(\mathbf{x}_b^j) - g(\mathbf{x}_b^j) \right)^2$   
Residual term  
 $L_r(\boldsymbol{\theta}) = \frac{1}{N_c} \sum_{j=1}^{N_c} \left( \mathcal{F}[\widehat{u}_{\boldsymbol{\theta}}](\mathbf{x}_c^j) - f(\mathbf{x}_c^j) \right)^2$ 

# Hard cases: high-freq. + multi-scale PDEs

- - $(\sin(x) + 0.1\sin(20x) + \cos(100x))(\sin(y) + 0.1\sin(20y) + \cos(100y))$

3.271

- Current NN-based ML solvers hard to handle such cases, because:
  - "Specturm bias"[1] in NN training
  - Easy to capture low-freq. info, hard to capture high-freq.

3

## Motivation of GP-HM(our work)

Goals:

- Model the PDE solution in the frequency domain
- Estimate the target frequencies from covariance function

Kernel Learning & Wiener-Khinchin Theorm

• Apply Gaussian Processes(GPs) with proper kernels as an alternative ML solver

$$\begin{cases} u(\cdot) \sim \mathcal{GP}(m(\cdot), \operatorname{cov}(\cdot, \cdot)) \\ \operatorname{cov}\left(\partial_{x_1 x_2} u(\mathbf{x}), u(\mathbf{x}')\right) = \partial_{x_1 x_2} k(\mathbf{x}, \mathbf{x}') \end{cases}$$



#### Model of GP-HM

• Model PDE solution's **power spectrum** with a mixture of student-t (St) distribution

(distribution of function in frequency domain: norm of FT[u])

$$S(s) = \sum_{q=1}^{Q} w_q \operatorname{St}(s; \mu_q, \rho_q^2, \nu),$$
Non-negative Component weight One principle frequency  $\mu_q$ 

• Alternative: a mixture of Gaussian distribution

$$S(s) = \sum_{q=1}^{Q} w_q \mathcal{N}(s; \mu_q, \rho_q^2)$$

5



• Apply <u>Wiener-Khinchin theorem:</u> transform spectrum to valid covariance function (kernel)

From the mixure of student-t:

$$k_{\text{StM}}(x, x') = \sum_{q=1}^{Q} w_q \gamma_{\nu, \rho_q}(x, x') \cos(2\pi \mu_q (x - x')),$$

From the mixure of Gaussian: (known as *spectral mixture kernel*)

$$k_{\rm GM}(x,x') = \sum_{q=1}^{Q} w_q \exp\left(-\rho_q^2 (x-x')^2\right) \cdot \cos(2\pi (x-x')\mu_q).$$



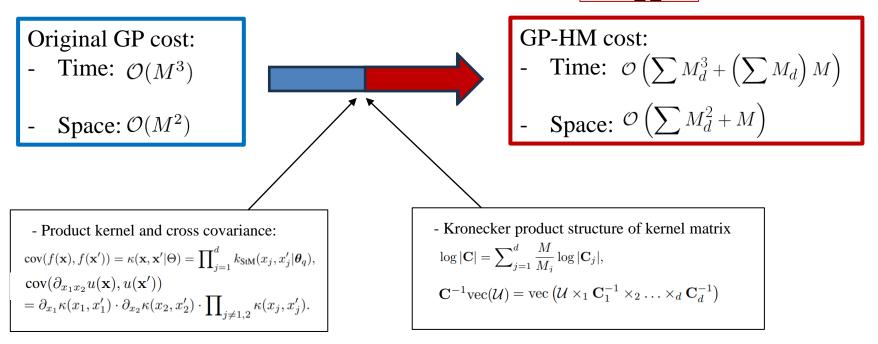
## Objective and inference

- Parameters to learn:
  - Solution values at grid points:  $\mathcal{U} = \{u(\mathbf{x}) | \mathbf{x} \in \mathcal{G}\}$ , which is an  $M_1 \times \ldots \times M_d$  array.
  - Kernel parameters (freq., weights...):  $\Theta_{i}$
  - Observation noises (in domain & boundary):  $\tau_1$  and  $\tau_2$
- Inference: maximize log joint probability

$$\mathcal{L}(\mathcal{U}, \Theta, \tau_{1}, \tau_{2}) = \log \mathcal{N}(\operatorname{vec}(\mathcal{U})|\mathbf{0}, \mathbf{C}) + \lambda_{b} \cdot \log \mathcal{N}(\mathbf{g}|\mathbf{u}_{b}, \tau_{1}^{-1}\mathbf{I}) + \log \mathcal{N}(\mathbf{0}|\operatorname{vec}(\mathcal{H}), \tau_{2}^{-1}\mathbf{I})$$
GP priors of the solution (compute from the kernel) Likelihood of the boundary conditions Likelihood on the differential terms in domain
$$Recap: loss func. of PINN : \theta^{*} = \operatorname{argmin}_{\theta} L_{b}(\theta) + L_{r}(\theta),$$

# **Structured kernel for efficient computation**

For grids with resolution  $M_1 \times \ldots \times M_d$ , we will have  $M = \prod M_d$  allocation points





#### Numerical results

| Method            | 1D       |          |          |          |          | 2D      |          |
|-------------------|----------|----------|----------|----------|----------|---------|----------|
|                   | $u_1$    | $u_2$    | $u_3$    | $u_4$    | $u_5$    | $u_6$   | $u_7$    |
| PINN              | 1.36e0   | 1.40e0   | 1.00e0   | 1.42e1   | 6.03e-1  | 1.63e0  | 9.99e-1  |
| W-PINN            | 1.31e0   | 2.65e-1  | 1.86e0   | 2.60e1   | 6.94e-1  | 1.63e0  | 6.75e-1  |
| <b>RFF-PINN</b>   | 4.97e-4  | 2.00e-5  | 7.29e-2  | 2.80e-1  | 5.74e-1  | 1.69e0  | 7.99 e-1 |
| Rowdy             | 1.70e0   | 1.00e0   | 1.00e0   | 1.01e0   | 1.03e0   | 2.24e1  | 7.36e-1  |
| Spectral method   | 2.36e-2  | 3.47e0   | 1.02e0   | 1.02e0   | 9.98e-1  | 1.58e-2 | 1.04e0   |
| Chebfun           | 3.05e-11 | 1.17e-11 | 5.81e-11 | 1.14e-10 | 8.95e-10 | N/A     | N/A      |
| Finite Difference | 5.58e-1  | 4.78e-2  | 2.34e-1  | 1.47e0   | 1.40e0   | 2.33e-1 | 1.75e-2  |
| GP-SE             | 2.70e-2  | 9.99e-1  | 9.99e-1  | 3.19e-1  | 9.75e-1  | 9.99e-1 | 9.53e-1  |
| GP-Matérn         | 3.32e-2  | 9.8e-1   | 5.15e-1  | 1.83e-2  | 6.27e-1  | 6.28e-1 | 3.54e-2  |
| GP-HM-GM          | 3.99e-7  | 2.73e-3  | 3.92e-6  | 1.55e-6  | 1.82e-3  | 6.46e-5 | 1.06e-3  |
| GP-HM-StM         | 6.53e-7  | 2.71e-3  | 3.17e-6  | 8.97e-7  | 4.22e-4  | 6.87e-5 | 1.02e-3  |

Table 1: Relative  $L_2$  error in solving 1D and 2D Poisson equations, where  $u_j$ 's are different high-frequency and multi-scale solutions:  $u_1 = \sin(100x)$ ,  $u_2 = \sin(x) + 0.1\sin(20x) + 0.05\cos(100x)$ ,  $u_3 = \sin(6x)\cos(100x)$ ,  $u_4 = x\sin(200x)$ ,  $u_5 = \sin(500x) - 2(x - 0.5)^2$ ,  $u_6 = \sin(100x)\sin(100y)$  and  $u_7 = \sin(6x)\sin(20x) + \sin(6y)\sin(20y)$ .

#### Numerical results: visulization

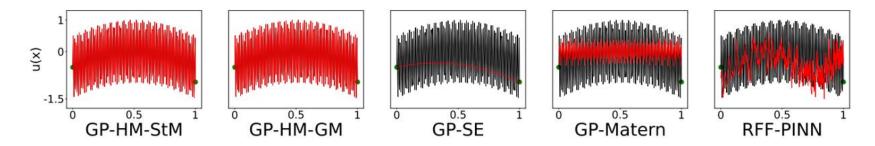


Figure 2: Prediction for the 1D Poisson equation with solution  $\sin(500x) - 2(x - 0.5)^2$ .

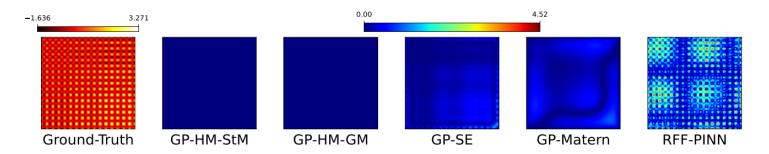


Figure 3: Point-wise solution error for 2D Allen-cahn equation, and the solution is  $(\sin(x) + 0.1\sin(20x) + \cos(100x))(\sin(y) + 0.1\sin(20y) + \cos(100y))$ .

UNIVERSITY of Utah®



# Thank you!

