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ABSTRACT
Snooping and directory-based coherence protocols have become
the de facto standard in chip multi-processors, but neither design
is without drawbacks. Snooping protocols are not scalable, while
directory protocols incur directory storage overhead, frequent in-
directions, and are more prone to design bugs. In this paper, we
propose a novel coherence protocol that greatly reduces the number
of coherence operations and falls back on a simple broadcast-based
snooping protocol when infrequent coherence is required. This new
protocol is based on the premise that most blocks are either pri-
vate to a core or read-only, and hence, do not require coherence.
This will be especially true for future large-scale multi-core ma-
chines that will be used to execute message-passing workloads in
the HPC domain, or multiple virtual machines for servers. In such
systems, it is expected that a very small fraction of blocks will be
both shared and frequently written, hence the need to optimize co-
herence protocols for a new common case. In our new protocol,
dubbed SWEL (protocol states are Shared, Written, Exclusivity
Level), the L1 cache attempts to store only private or read-only
blocks, while shared and written blocks must reside at the shared
L2 level. These determinations are made at runtime without soft-
ware assistance. While accesses to blocks banished from the L1
become more expensive, SWEL can improve throughput because
directory indirection is removed for many common write-sharing
patterns. Compared to a MESI based directory implementation, we
see up to 15% increased performance, a maximum degradation of
2%, and an average performance increase of 2.5% using SWEL and
its derivatives. Other advantages of this strategy are reduced proto-
col complexity (achieved by reducing transient states) and signifi-
cantly less storage overhead than traditional directory protocols.
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1. INTRODUCTION
It is expected that multi-core processors will continue to support

cache coherence in the future. Cache coherence protocols have
been well-studied in the multi-socket multiprocessor era [9] and
several snooping-based and directory-based protocols have emerged
as clear favorites. Many of these existing solutions are being di-
rectly employed in modern multi-core machines. However, we be-
lieve that there are several differences between the traditional work-
loads that execute on modern multiprocessors, and workloads that
will be designed for future many-core machines.

Expensive multi-socket systems with hardware cache coherence
were designed with specific shared-memory applications in mind,
i.e., they were not intended as general-purpose desktop machines
that execute a myriad of single and multi-threaded applications.
Many of the applications running on today’s multi-core machines
are still single-threaded applications that do not explicitly rely on
cache coherence. Further, future many-cores in servers and data-
centers will likely execute multiple VMs (each possibly executing a
multi-programmed workload), with no data sharing between VMs,
again obviating the need for cache coherence. We are not claim-
ing that there will be zero data sharing and zero multi-threaded ap-
plications on future multi-cores; we are simply claiming that the
percentage of cycles attributed to shared memory multi-threaded
execution (that truly needs cache coherence) will be much lower in
the many-core era than it ever was with traditional hardware cache
coherent multiprocessors. If the new common case workload in
many-core machines does not need cache coherence, a large invest-
ment (in terms of die area and design effort) in the cache coherence
protocol cannot be justified.

Continuing the above line of reasoning, we also note that many-
core processors will also be used in the high performance com-
puting (HPC) domain, where highly optimized legacy MPI appli-
cations are the common case. Data sharing in these programs is
done by passing messages and not directly through shared mem-
ory. However, on multicore platforms these messages are passed
through shared memory buffers, and their use shows a strong producer-
consumer sharing pattern. State-of-the-art directory-based cache
coherence protocols, which are currently employed in large-scale
multi-cores, are highly inefficient when handling producer-consumer
sharing. This is because of the indirection introduced by the direc-



tory: the producer requires three serialized messages to complete
its operation and the consumer also requires three serialized mes-
sages. Thus, directory protocols are likely to be highly inefficient
for both the on-chip and off-chip sharing patterns that are becoming
common in large-scale multi-cores.

Given the dramatic shift in workloads, there is a need to re-
consider the design of coherence protocols; new coherence pro-
tocols must be designed to optimize for a new common case. We
must first optimize for the producer-consumer sharing pattern. Sec-
ondly, if most blocks are only going to be touched by a single core,
the storage overhead of traditional directories that track large shar-
ing vectors is over-provisioned and should be eliminated. Finally,
we need simpler protocols that can lower design and verification ef-
forts when scaling out. In this paper, we propose a novel hardware
cache coherence protocol that tries to achieve the above goals.

Our protocol (named SWEL after the protocol states) is based
on the premise that a large fraction of blocks are either private to
a core or are shared by multiple cores in read-only mode. Such
blocks do not require any cache coherence. Blocks must be both
shared and written for coherence operations to be necessary. A
key example of such blocks are those used in producer-consumer
relationships. We recognize that blocks of this type are best placed
in the nearest shared cache in the memory hierarchy, eliminating
the need for constant, expensive use of coherence invalidations and
updates between local private caches.

By eliminating the traditional coherence invalidate/update pat-
tern, we can avoid implementing a costly sharer-tracking coher-
ence mechanism. Instead, we propose using a simpler mechanism
that can categorize blocks in one of only two categories (private or
read-only vs. shared and written). Traditional directory overheads
are now replaced with the book-keeping state required to achieve
this categorization. This new protocol therefore has lower storage
overhead and fewer transient states. The protocol does have some
disadvantages, borne out of the fact that some blocks are relegated
to a slower, shared cache level (L2 in this paper), and are there-
fore more expensive to access. Our results show that on average a
SWEL based protocol can outperform a traditional MESI directory-
based protocol by 2.5% on multi-threaded workloads from PAR-
SEC, SPLASH-2, and NAS. This improvement is accompanied by
lower storage overhead and design effort.

In Section 2 of this paper, we discuss the background of coher-
ence protocols, their purposes, and the motivation for the features
SWEL offers. Section 3 outlines the SWEL protocol, and we dis-
cuss its operations, drawbacks and how some of those drawbacks
can be improved upon. In Section 4 we discuss the theoretical dif-
ferences between the performance of MESI and SWEL, and the cir-
cumstances under which each should have optimal and worst per-
formance. Sections 5 and 6 deal with our simulation methodology
and results. In Section 7 we discuss related work and in Section 8
we wrap up our discussion of the SWEL protocol.

2. BACKGROUND & MOTIVATION

2.1 Data Sharing in Multi-threaded Workloads
All cache coherence protocols operate on the basic assumption

that all data may be shared at any time, and measures need to be
taken at every step to ensure that correctness is enforced when this
sharing occurs. Traditional coherence systems over-provision for
the event that all data may be shared by every processor at the
same time, which is an extremely unlikely scenario. While pri-
vate data never will require coherence operations, shared data may
or may not require coherence support. Shared data can be broken
down into two classes: read-only and read-write. Shared, read-only

blocks are not complicated to handle efficiently, as simple replica-
tion of the data is sufficient. Shared data that is also written to,
however, must be handled with care to guarantee that correctness
and consistency is maintained between cores.

Figure 1 shows the sharing profile of several 16 threaded ap-
plications from the NAS Parallel Benchmarks [4], Parsec [5], and
Splash2 [22] suite by (a) location, and (b) references. Breaking
down sharing by locations and references provides two different
views of how sharing occurs. Figure 1a indicates that very little
data is actually shared by two or more cores; on average 77.0% of
all memory locations are touched by only a single processor. Fig-
ure 1b however, shows that in terms of memory references, private
data locations are accessed very infrequently (only 12.9% of all ac-
cesses). This implies that the vast majority of accesses in workload
execution actually reference a very small fraction of the total mem-
ory locations. While the majority of accesses are to locations which
are shared, very few of those locations (7.5% on average) are both
shared and written, the fundamental property on which we base this
work. Because shared/written data is a fundamental synchroniza-
tion overhead that limits application scalability, we expect future
workloads to try and minimize these accesses even further.

2.2 Coherence Protocols
For this study, we assume an on-chip cache hierarchy where each

core has private L1 instruction and data caches and a shared L2
cache. The L2 cache is physically distributed on-chip such that
each processor “tile” includes a bank of the L2 cache. We assume
an S-NUCA [16] style L2 cache, where the address is enough to
identify the bank that contains the relevant data. Our focus is the
implementation of hardware coherence among the many private
L1s and the shared L2, though our proposal could easily be ex-
tended to handle a multi-level hierarchy.

Coherence is typically implemented with snooping or directory-
based protocols [9]. Bus-based snooping protocols are generally
simpler to design, but are not scalable because of the shared bus.
Directory-based protocols will likely have to be employed for many-
core architectures of the future. As a baseline throughout this study,
we will employ a MESI directory-based and invalidation-based co-
herence protocol. The salient features of this protocol are as fol-
lows:

• Directory storage: Each cache block in L2 must maintain
a directory to keep track of how the block is being shared
by the L1s. In an unoptimized design, each L2 cache block
maintains a bit per L1 cache in the directory. Each bit denotes
if the corresponding L1 has a copy of this cache block. The
directory includes additional bits per cache block to denote
the state of the cache block. Thus, the directory grows lin-
early with the number of cores (or private L1s). This storage
overhead can be reduced by maintaining a bit per group of
cores [9, 17]. If a bit is set in the directory, it means that
one of the cores in that group of cores has a copy of the
block. Therefore, when invalidating a cache block, the mes-
sage must be broadcast to all the cores in a group marked as
a sharer. This trades off some directory storage overhead for
a greater number of on-chip network messages. It must also
be noted that each L1 cache block requires two bits to track
one of the four MESI coherence states.

• Indirection: All L1 misses must contact the directory in L2
before being serviced. When performing a write, the direc-
tory is often contacted and the directory must send out inval-
idations to other sharers. The write can proceed only after
acknowledgments are received from all sharers. Thus, mul-



a. Sharing profile by memory locations b. Sharing profile by memory references

Figure 1: Motivational Data: Memory sharing profile of 16 core/thread workloads

tiple messages must be exchanged on the network before the
coherence operation is deemed complete. Similarly, when
an L1 requests a block that has been written by another L1,
the directory is first contacted and the request is forwarded
to the L1 that has the only valid copy. Thus, many common
coherence operations rely on the directory to serve as a liai-
son between L1 caches. Unlike a snooping-based protocol,
the involved L1 caches cannot always directly communicate
with each other. This indirection introduced by the directory
can slow down common communication patterns. A primary
example is the producer-consumer sharing pattern where one
core writes into a cache block and another core attempts to
read the same cache block. As described above, each opera-
tion requires three serialized messages on the network.

• Complexity: Directory-based coherence protocols are often
error-prone and entire research communities are tackling their
efficient design with formal verification. Since it is typically
assumed that the network provides no ordering guarantees, a
number of corner cases can emerge when handling a coher-
ence operation. This is further complicated by the existence
of transient coherence states in the directory.

In this work, we attempt to alleviate the above three negative at-
tributes of directory-based coherence protocols.

3. SWEL PROTOCOL AND
OPTIMIZATIONS

We first describe the basic workings of the SWEL protocol from
a high level. The protocol design is intended to overcome three
major deficiencies in a baseline directory-based protocol: the di-
rectory storage overhead, the need for indirection, and the protocol
complexity. The basic premise is this: (i) many blocks do not need
coherence and can be freely placed in L1 caches; (ii) blocks that
would need coherence if placed in L1 are only placed in L2. Given
this premise, it appears that the coherence protocol is all but elim-
inated. This is only partially true as other book-keeping is now
required to identify which of the above two categories a block falls
into.

If a cache block is either private or is read-only, then that block
can be safely cached in the L1 without ever needing to worry about
coherence. If the block is both shared (not private) and written
(not read-only), then it must never exist in the L1 and must exist
at the lowest common level of the cache hierarchy, where all cores

have equal access to it without fear of ever requiring additional
coherence operations. If a block is mis-categorized as read-only
or as private, then it must be invalidated and evicted from all L1
caches and must reside permanently in the lowest common level of
cache.

Consider from a high level how a block undergoes various tran-
sitions over its lifetime. When a block is initially read, it is brought
into both L1 and L2, because at this early stage the block appears
to be a private block. Some minor book-keeping is required in the
L2 to keep track of the fact that only one core has ever read this
block and that there have been no writes to it. If other cores read
this block or if the block is ever written to, then the book-keeping
state is updated. When the state for a block is “shared + written,”
the block is marked as “un-cacheable” in L1 and an invalidation
is broadcast to all private caches. All subsequent accesses to this
block are serviced by the lowest common level of cache, which in
our experiments and descriptions is L2.

3.1 SWEL States and Transitions

3.1.1 States
We now explain the details of the protocol and the new states in-

troduced. Every L2 cache block has 3 bits of state associated with
it, and every L1 cache block has 1 bit of state. The first state bit in
L2, Shared (S), keeps track of whether the block has been touched
by multiple cores. The second state bit, Written (W), keeps track of
whether the block has been written to. The third state bit, Exclu-
sivity Level (EL), which is also the one state bit in the L1, denotes
which cache has exclusive access to this block. The exclusivity
level bit may only be set in one cache in the entire system, be it
the L2 or one of the L1s. We therefore also often refer to it as the
EL Token. The storage requirement for SWEL (3 bits per L2 block
and 1 bit per L1 block) does not depend on the number of sharers
or L1 caches (unlike the MESI directory protocol); it is based only
on the number of cache blocks. These 4 bits are used to represent 5
distinct states in the collapsed state diagram shown in Figure 2(a).
We next walk through various events in detail. For now, we will
assume that the L1 cache is write-through and the L1-L2 hierarchy
is inclusive.

3.1.2 Initial Access
When a data block is first read by a CPU, the block is brought

into the L2 and the corresponding L1, matching the Private Read
state in the diagram. The EL state bit in the L1 is set to denote



(a) SWEL

(b) MESI

Figure 2: Collapsed State Machine Diagram for the SWEL and
MESI Protocols

that the block is exclusive to the L1. The block in L2 is set as
non-shared, non-written, and not exclusive to the L2. If this block
is evicted from the L1 while in this state, it sends a message back
to the L2 giving up its EL bit, matching the L2 Only state in the
diagram. The state in the L2 is now non-shared, non-written and
exclusive to the L2. If read again by a CPU, the block will re-enter
the Private Read state.

3.1.3 Writes

When a block is first written by a CPU, assuming it was either in
the L2 Only state or the Private Read state, it will enter the Private
R/W state. If this initial write resulted in an L2 miss, then the block
will enter this state directly. A message is sent as part of the write-
through policy to the L2 so that it may update its state to set the
W bit. The W bit in the L2 is “sticky”, and will not change until
the block is evicted from the L2. This message also contains a bit
that is set if this writing CPU has the EL token for that block. This
is so the L2 knows to not transition to a shared state. From the
Private R/W state, an eviction of this block will send a message to
the L2 giving back its EL bit and it will go back to the L2 Only
state. Private data spends all of its time in these three states: L2
Only, Private Read and Private R/W.

3.1.4 Determining the Shared State

If a cache reads or writes a block and neither the cache nor the
L2 have the corresponding EL token, then the L2 must set its S
bit and enter either the Shared Read or Shared Written state. Once
a block has its S bit set in the L2, that bit can never be changed
unless the block is evicted from the L2. Since this is a sticky state,

the EL token ceases to hold much meaning so it is unimportant
for the EL token to be reclaimed from the L1 that holds it at this
time. Additional shared readers beyond the first do not have any
additional impact on the L2’s state.

3.1.5 L1 Invalidation and L2 Relegation

Shared Read blocks are still able to be cached in the L1s, but
Shared R/W blocks must never be. When a block first enters the
Shared R/W state, all of the L1s must invalidate their copies of that
data, and the EL bit must be sent back to the L2. The invalidation
is done via a broadcast bus discussed later. Since this is a rela-
tively uncommon event, we do not expect the bus to saturate even
for high core counts. Future accesses of that data result in an L1
miss and are serviced by the L2 only. Data that is uncacheable at
a higher level has no need for cache coherence. Once a block en-
ters the Shared R/W state, there is no way for it to ever leave that
state. The Shared R/W state can be reached from 3 different states.
First, a Shared Read block can be written to, causing the data to be
shared, read and now written. Second, a Private R/W block can be
accessed by another CPU (either read or written), causing the data
to be read, written and now shared. Finally, a Private Read block
can be written to by another CPU, causing the block to be read and
now written and shared.

3.1.6 Absence of Transient States

Transient states are usually introduced in conventional directory
protocols when a request arrives at the directory and the directory
must contact a third party to resolve the request. Such scenarios
never happen in the SWEL protocol as most transactions typically
only involve one L1 and the L2. The L2 is typically contacted to
simply set either the Shared or Written bit and these operations can
happen atomically. The only potentially tricky scenario is when a
block is about to be categorized as “shared + written”. This tran-
sition happens via an invalidation on a shared broadcast bus, an
operation that is atomic. The block is immediately relegated to L2
without the need to maintain a transient state. Therefore, the bus is
strategically used to handle this uncommon but tricky case, and we
derive the corresponding benefit of a snooping-based protocol here
(snooping-based protocols do not typically have transient states).

3.1.7 Requirements for Sequential Consistency

A sequentially consistent (SC) implementation requires that each
core preserve program order and that each write happens atomically
in some program-interleaved order [9]. In a traditional invalidation-
based directory MESI protocol, the atomic-write condition can be
simplified to state, “a cached value cannot be propagated to other
readers until the previous write to that block has invalidated all
other cached copies” [9]. This condition is trivially met by the
SWEL protocol – when the above situation arises, the block is rele-
gated to L2 after a broadcast that invalidates all other cached copies.

As a performance optimization, processors can issue reads spec-
ulatively, but then have to re-issue the read at the time of instruction
commit to verify that the result is the same as an SC implementa-
tion. Such an optimization would apply to the SWEL protocol just
as it would to the baseline MESI protocol.

Now consider the speculative issue of writes before prior opera-
tions have finished. Note that writes are usually not on the critical
path, so their issue can be delayed until the time of commit. Since
a slow write operation can hold up the instruction commit process,
they are typically placed away in a write buffer. This can give rise
to a situation where a thread has multiple outstanding writes in a
write buffer. This must be handled carefully so as to not violate



SC. In fact, a write can issue only if the previous write has been
made “visible” to its directory. This is best explained with an ex-
ample.

Consider a baseline MESI protocol and thread T1 that first writes
to A and then to B. At the same time, thread T2 first reads B and
then A. If the read to B returns the new value, as written by T1, an
SC implementation requires that the read to A should also return
its new value. If T1’s write request for A is stuck in network traffic
and hasn’t reached the directory, but the write to B has completed,
there is a possibility that thread T2 may move on with the new
value of B, but a stale value of A. Hence, T1 is not allowed to
issue its write to B until it has at least received an Ack from the
directory for its attempt to write to A. This Ack typically contains a
speculative copy of the cache block and the number of sharers that
will be invalidated and that will be sending additional Acks to the
writer.

In exactly the same vein, in the SWEL protocol, we must be
sure that previous writes are “visible” before starting a new write.
If the write must be propagated to the L2 copy of that block, the
L2 must send back an Ack so the core can proceed with its next
write. This is a new message that must be added to the protocol
to help preserve SC. The Ack is required only when dealing with
shared+written blocks in L2 or when issuing the first write to a pri-
vate block (more on this shortly). The Ack should have a minimal
impact on performance if the write buffers are large enough.

3.2 Optimizations to SWEL

The basic SWEL protocol is all that is necessary to maintain co-
herence correctly, although there are some low-overhead optimiza-
tions that improve its performance and power profile considerably.

3.2.1 Write Back
SWEL requires that all L1 writes be written through to the L2

so that the L2 state can be updated as soon as a write happens, just
in case the cache block enters the Shared R/W state and requires
broadcast invalidation. Writing through into the NUCA cache (and
receiving an Ack) can significantly increase on-chip communica-
tion demands. For this reason, we add one more bit to the L1 cache
indicating whether that block has been written by that CPU yet,
which will be used to reduce the amount of write-through that hap-
pens in the cache hierarchy. This optimization keeps the storage
requirement of the SWEL protocol the same in L2 (3 bits per cache
block) and increases it to 2 bits per cache block in each L1.

When a CPU first does a write to a cache block, it will not have
the write back bit set for that block and must send a message to
the L2 so that the L2’s W bit can be set for that block. When this
message reaches the L2, one of two things will happen depending
on its current state. Either the write was to a shared block, which
would cause a broadcast invalidate, or the write was to a private
block, with the writer holding the original EL token. In the former
case the operation is identical to the originally described SWEL
protocol. After this initial write message, all subsequent writes to
that cache block in the L1 can be treated as write-back. The write-
back happens when this block is evicted from the L1 for capacity
issues, as in the normal case of write-back L1 caches, or in the
event of a broadcast invalidate initiated by the SWEL protocol.

3.2.2 Reconstituted SWEL - RSWEL
The basic SWEL protocol evicts and effectively banishes Shared

R/W data from the L1s in order to reduce the number of coher-
ence operations required to maintain coherence. This causes the
L1s to have a 0% hit rate when accessessing those cache blocks,

and forces all requests to that data to go to the larger, slower shared
L2 from the time the blocks are banished. It is easy to imagine this
causing very low performance in programs where data is shared
and written early on in execution, but from then on is only read.
We propose improving SWEL’s performance in this case with the
Reconstituted SWEL optimization (RSWEL). This allows banished
data to be cacheable in the L1s again after it has been banished, ef-
fectively allowing the re-characterization of Shared R/W data to be
private or read-only data again, and improving the latency to access
those blocks. After a cache block is reconstituted, it may be broad-
cast invalidated again, and in turn it may be reconstituted again.
The RSWEL optimization aims to allow for optimum placement of
data in the cache hierarchy at any given time.

Since the goal of the SWEL protocol is to reduce coherence op-
erations by forcing data to reside at a centralized location, it is
not necessarily the goal of the RSWEL optimization to have data
constantly bouncing between L1s and L2 like a directory protocol
would have it do. Instead the RSWEL optimization only reconsti-
tutes data after a period of time, and only if it is unlikely to cause
more coherence operations in the near future. For this reason we
add a 2-bit saturating counter to the L2 state which is initialized
with a value of 2 when a cache block is first broadcast invalidated,
and which is incremented each time the block is written while in
its banished state. The counter is decremented with some period
N, and when it reaches 0, the cache block can be reconstituted on
its next read. The RSWEL protocol with a period N=0 will behave
similarly to a directory protocol, where data can be returned to the
L1s soon after it is broadcast invalidated, and a period N=infinity
will behave identically to the regular SWEL protocol.

3.3 Dynamically Tuned RSWEL

The RSWEL optimization assumes a fixed reconstitution period
for the entire program execution. This does not take into account
transitions in program phases, which may prefer one reconstitu-
tion period or another. To solve this problem, we also introduce
a Dynamically Tuned version of RSWEL, which seeks to find the
locally optimal reconstitution period N for each program phase.

This works by analyzing the performance of the current epoch of
execution, and comparing that with the previous epoch’s analysis.
If sufficient change is noticed, then we consider a program phase
change to have occurred, and we then explore several different val-
ues of N to see which yields the locally highest performance. After
this exploration is completed, the N with the highest performance
is used until another program phase change is detected.

The details of our implementation of this scheme into the frame-
work of the RSWEL protocol are as follows. To detect program
phase changes, we use the metric of average memory latency, and
when this varies by 5%, we consider a program phase change to
have taken place. During exploration, we try to maximize L1 hit
rates, as this metric most closely correlates with performance and
can be measured on a local scale. Our epoch length is 10 kilo-
cycles, and we use the reconstitution period timers of N = 10, 50,
100, 500 and 1,000 cycles.

Average memory operation latency is an appropriate metric to
detect program phase changes because it stays relatively the same
for a given sharing pattern, but then changes sharply when a new
sharing pattern is introduced, which is indicative of a program phase
change. We kept the N-cycle timer in the range of 10-1,000 because
the highest performing timer values for our benchmark suite are fre-
quently within this range, and rarely outside it, as can be seen later
in Figure 6a.



3.4 SWEL/RSWEL Communication
Implementation

Up to this point we have talked about on-chip communication
from a very high-level perspective, but now we will describe the
methods of communication in the SWEL design. SWEL combines
a point-to-point packet-switched network with a global broadcast
bus. The point-to-point network is used for handling cache misses
of remote data, write back, and write through messages. The global
broadcast bus is used exclusively for sending out cache block inval-
idation messages.

The point-to-point network serves fewer functions in SWEL than
it does in a MESI protocol. In MESI, the network serves all of
the same functions as in SWEL, but it also handles indirection to
find the latest copy of data, and point-to-point invalidation. If the
amount of traffic generated by MESI’s indirection and invalidation
is more than the amount of traffic generated by SWEL’s write ad-
dress messages and compulsory L1 misses of Shared R/W data,
then some energy could be saved in the network by SWEL. How-
ever, we expect this to likely not be the case as the MESI coherence
messages are short, but the compulsory L2 accesses in SWEL re-
quire larger data transfers.

The global broadcast bus serves a single function in SWEL, and
we believe this bus will scale better than buses are generally be-
lieved to scale because of its low utilization rate. Buses perform
poorly when they are highly utilized. However, the bus in SWEL
is used only for broadcast invalidates, and these occur infrequently,
only when a block’s classification changes. When a MESI protocol
repeatedly performs point-to-point invalidates of the same cache
block, SWEL performs only one broadcast invalidate of that cache
block ever. The RSWEL protocol might perform multiple broad-
cast invalidates of the same block, but for the right reconstitute
period N it will do it far less often than a MESI protocol would
perform point-to-point invalidates.

4. SYNTHETIC BENCHMARK
COMPARISON

4.1 Best Case Performance - MESI and SWEL
Since coherence operations are only required to bring the system

back into a coherent state after it leaves one, none are required if the
system never leaves a coherent state in the first place. When run-
ning highly parallel programs with little or no sharing, or running
different programs concurrently, very few or no coherence opera-
tions will be required. In the case of MESI, no sharer bits will be
set, so when writes occur, no invalidation messages will be sent.
In the case of SWEL, the shared bit in the L2 state is never set,
so when writes occur, there are never any broadcast invalidates.
As a result, in the case where all data is processor private, SWEL
and MESI will perform identically. As stated earlier, we believe
these types of programs to be the norm in future large-scale paral-
lel systems. For these benchmark classes, SWEL is able to achieve
the same level of performance as MESI with a much lower storage
overhead and design/verification effort.

4.2 Worst Case Performance - MESI
MESI is at its worst in producer-consumer type scenarios. In

these programs, one processor writes to a cache block, invalidating
all other copies of that block in the system. Later, another processor
reads that block, requiring indirection to get the most up to date
copy of that block from where it was modified by the first processor.
Repeated producing and consuming of the same block repeats this
process.

SWEL handles this situation much more elegantly. When one
processor writes a block and another reads it, the block permanently
enters the shared + written state, so the data is only cacheable in the
L2. From then on, all reads and writes to this block have the same
latency, which is on average lower than the cost of MESI’s indirec-
tion and invalidation. Our test of a simple two thread producer con-
sumer program showed SWEL to perform 33% better than MESI
in this ideal case.

4.3 Worst Case Performance - SWEL
SWEL is at its worst when data is shared and written early in

program execution, causing it to only be cacheable in the L2, and
then rarely (if ever) written again but repeatedly read. SWEL is
forced to have a 0% L1 hitrate on this block, incurring the cost of
an L2 access each time which typically exceeds L1 latency by 3-
5x. This can happen because of program structure or because of
thread migration to an alternate processor in the system due to load
balancing. If a thread migrates in a SWEL system, then all of its
private written data will be mis-characterized as Shared R/W.

In this case, MESI handles itself much more efficiently. After the
block goes through its initial point to point invalidate early in pro-
gram execution, it is free to be cached at the L1 level again benefit-
ing from the low L1 access latency. Our test of a simple two thread
program specifically showing off this behavior showed MESI per-
forms 62% better than SWEL. It is important to keep in mind that
the RSWEL optimization allowing reconstitution of shared+written
blocks back into L1 completely overcomes this weakness. Thus,
we point out this worst case primarily to put our results for the
baseline SWEL protocol into context.

5. METHODOLOGY

5.1 Hardware Implementation
In order to test the impact of our new coherence protocol, we

modeled 3 separate protocol implementations using the Virtutech
Simics [18] full system simulator version 3.0.x. We model a Sun-
fire 6500 machine architecture modified to support a 16-way CMP
processor implementation of in-order ultraSPARC III cores with
system parameters as shown in Table 1. For all systems modeled,
our processing cores are modeled as in-order with 32 KB 2-way L1
instruction and data caches with a 3 cycle latency. All cores share
a 16 MB SNUCA L2 with 1 MB local banks having a bank la-
tency of 10 cycles. The L2 implements a simple first touch L2 page
coloring scheme [8, 15] to achieve locality within this L2 and to
reduce routing traffic and average latency to remote bank accesses.
Off-chip memory accesses have a static 300 cycle latency to ap-
proximate best-case multi-core memory timings as seen by Brown
and Tullsen [7].

Our on-chip interconnect network is modeled as a Manhattan
routed interconnect utilizing 2 cycle wire delay between routers
and 3 cycle delays per pipelined router. All memory and wire delay
timings were obtained from the recent CACTI 6.5 update to CACTI
6.0 [20], with a target frequency of 3 GHz at 32 nm, assuming a
1 cm2 chip size. Energy numbers for the various communication
components can be found in Table 1.

5.2 Benchmarks
For all benchmarks, we chose to use a working set input size that

allowed us to complete the entire simulation for the parallel region
of interest. By simulating all benchmarks and implementations for
a constant amount of work, we can use throughput as our measure
of performance. The fewer cycles required to complete this defined
region of interest, the higher the performance. This eliminates the



Core and Communication Parameters
ISA UltraSPARC III ISA

CMP size and Core Freq. 16-core, 3.0 GHz Network Dimension-order Routed Grid
L1 I-cache 32KB/4-way, private, 3-cycle Router Latency 3-cycle
L1 D-cache 32KB/4-way, private, 3-cycle Link Latency 2-cycle

L2 Cache Organization 16x 1MB banks/8-way, shared Bus Arbitration Latency 12-cycle
L2 Latency 10-cycle + network Bus Transmission Latency 14-cycle

L1 and L2 Cache block size 64 Bytes Flit Size 64 bits
DRAM latency 300 cycles

Energy Characteristics
o
Router Energy 1.39x10−10

J

Link Energy (64 wide) 1.57x10−11
J

Bus Arbitration Energy 9.85x10−13
J

Bus Wire Energy (64 wide) 1.25x10−10
J

Table 1: Simulator parameters.

Figure 3: Benchmark performance

effects of differential spinning [3] that can artificially boost IPC as a
performance metric for multi-threaded simulations. Our simulation
length ranged from 250 million cycles to over 10 billion cycles per
core, with an average of 2.5 billion cycles per core.

6. EXPERIMENTAL RESULTS

The synthetic workloads shown in Section 4 show two extremes
of how parallel programs might behave. Real workloads should
always fall within these two bounds in terms of behavior and there-
fore performance. This section will focus on results from bench-
marks intended to be representative of real parallel workloads. We
are focusing our evaluation on a workload that will stress the co-
herence sub-system and identify the scenarios where SWEL and
its variants may lead to unusual performance losses. Note again
that SWEL is intended to be a low-overhead low-effort coherence
protocol for future common-case workloads (outlined in Section 1)
that will require little coherence. For such workloads (for exam-
ple, a multi-programmed workload), there will be almost no per-
formance difference between SWEL and MESI, and SWEL will be
a clear winner overall. Our hope is that SWEL will have acceptable
performance for benchmarks that frequently invoke the coherence
protocol, and even lead to performance gains in a few cases (for ex-
ample, producer-consumer sharing). The benchmarks we use come
from the PARSEC [5], Splash2 [22] and NAS Parallel [4] bench-
mark suites.

In determining the value of the SWEL and RSWEL protocols,
we look at five main metrics: performance, L1 miss rate per in-
struction, L1 eviction rate per instruction, network load, and energy
requirement.

6.1 Application Throughput
Performance is measured by the total number of cycles for a

program to complete rather than instructions per cycle, because in
our SIMICS simulation environment, it is possible for the IPC to
change drastically due to excess waiting on locks, depending on
the behavior of a particular benchmark. As can be seen in Figure 3,
RSWEL is consistently competitive with MESI, sometimes sur-
passing its performance, and is never too far behind MESI. SWEL
also compares favorably with MESI in some benchmarks, but its
worst case is much worse than RSWEL’s. We include N = 500 as
a datapoint because we found this to be the best all-around static
value of N.

SWEL is able to outperform MESI in both the Canneal and IS
benchmarks. Canneal employs fine-grained data sharing with high
degrees of sharing and data exchange. IS is a simple bucket sort
program, which exhibits producer-consumer sharing. In all cases,
RSWEL outperforms SWEL, frequently by a large amount. The
Dynamically Tuned RSWEL algorithm (referred to as RSWEL Tune
in the figures) is consistently a strong performer, but does not match
the best N. At its worst, RSWEL Tune is 2% worse than MESI, and
at its best it is 13% better performing, with an average of 2.5%. The
RSWEL protocols perform especially favorably in the Canneal, IS,
and Fluidanimate benchmarks.

6.2 L1 Evictions
Effective L1 cache capacity is increased by SWEL and RSWEL,

as is evidenced by the lower number of L1 evictions required by
those protocols, as shown in Figure 4a. Every time a new block
is allocated into the L1, it must evict an existing block. Under
MESI, when a block gets invalidated due to coherence, this block is
automatically selected for eviction rather than evicting a live block.
Under MESI, if that invalidated block is accessed a second time, it
will evict yet another block in the L1. These Shared R/W blocks
have a negative effect on the effective capacity of the L1 caches due
to thrashing. On the other hand, the longer the Shared R/W block
stays out of the L1 the longer that capacity can be used for other
live blocks.

SWEL does this well by keeping Shared R/W data out of the L1s
indefinitely. In all benchmarks, SWEL has the fewest L1 cache
evictions, meaning that more of the L1 cache is available to pri-
vate data for a larger percentage of program execution, and data is
not constantly being thrashed between L1 and L2 caches. The IS
benchmark shows this behavior well. RSWEL and SWEL have no-
ticeably fewer L1 evictions than MESI in this case. IS has a high
demand for coherence operations and this results in a high rate of
cache block thrashing between L1 and L2. If RSWEL uses the
right reconstitution period it has a good opportunity to increase the
effective cache size.



a. L1 evictions per kilo-instruction

b. L1 misses per kilo-instruction

Figure 4: L1 cache performance comparison of coherence pro-
tocols

6.3 L1 Miss Rate
The closer data can be found to where computation is performed,

the higher the performance. This is why performance is tied so
closely to L1 hit rates. Figure 4b shows the normalized number of
L1 misses per instruction of each of the different tested protocols.
It is immediately apparent that for some benchmarks, SWEL incurs
many more L1 misses than the other protocols, causing its perfor-
mance to be frequently weak compared to the other protocols. The
RSWEL protocols show miss rates comparable to MESI.

6.4 Communication Demands

• Grid Network: Network load represents the number of flits
that pass through the routers of the grid interconnect net-
work. An address message is one flit long and only con-
tributes one to the network load for each router it passes
through. For example, if an address message makes two
hops, then its network impact is 3–one for each hop and one
for the destination router which it must pass through. A data
message, which is comprised of 9 flits (1 for address and 8
for data), generates a network load of 9 for each router it
passes through. For example, a data message which travels
one hop generates a network load of 18–nine for the router it
touches before hopping to the destination, and another nine
for the destination router.

Since SWEL and RSWEL write-through to the L2 on the
first write of a cache block in L1, they will have higher net-
work demands than MESI. MESI is able to perform write
back on all of its writes, but SWEL protocols must perform

a. Average flits in the grid network at any given time

b. Operations needed to maintain coherence

Figure 5: Network utilization comparison of coherence proto-
cols

write-through unless they have the write-back token. Al-
though the write-back optimization can reduce the number of
write-throughs by 50-98%, there are still many extra write-
through messages in the system. Also, since SWEL’s L1 hit
rate is lower on average than MESI, the network is required
more often to get data from the NUCA L2. In many cases,
the RSWEL optimization can greatly reduce the amount of
network traffic required by SWEL, but it still requires more
network traffic than MESI on average (Figure 5a).

• Broadcast Bus:Broadcast buses are viable options when they
are under-utilized. Bus utilization is the ratio of the amount
of the time the bus is being charged to communicate, to the
total execution time. In our experiments, the greatest bus
utilization rate we observed was 5.6%, far below the accepted
rate of 50% when buses start to show very poor performance.
This occurred during the run of the IS benchmark, which had
the greatest demand for coherence operations by far, as seen
in Figure 5b.

• Coherence Operations:We define a coherence operation as
an action that must be taken to bring an incoherent system
back into coherence. In the case of directory-based MESI,
there are two primary coherence operations. Point to point
invalidates are required when shared data is written, causing
the sharers to become out of date. L1 to L1 indirect transfers
are required when one CPU holds a block in modified state
and another CPU attempts a read. SWEL has only one co-
herence operation, in contrast. The use of the broadcast bus
when a block enters the Shared R/W state atomically brings
an incoherent system back into coherence. One broadcast



a. RSWEL performance when varying the reconstitution time N

b. Performance sensitivity of SWEL and RSWEL to varying network and bus
latencies

Figure 6: Performance sensitivity to parameter variation
bus invalidate in SWEL can replace several point to point in-
validates and L1 to L1 indirect transfers in directory-based
MESI.

Figure 5b shows that for the majority of the sharing patterns
in these benchmarks, relatively little effort must be expended
to maintain coherence, much less than one coherence oper-
ation per thousand instructions. In the cases where greater
effort was required, SWEL and RSWEL significantly reduce
the number of coherence operations required.

6.5 Reconstitution Period Variation
The amount of time a block remains in the L2 will affect the

overall performance execution of a program. While we provide
just a few samples throughout most of our performance graphs, it is
critical to see the variance that can occur by choosing a sub-optimal
N . Figure 6a shows the performance sensitivity of our workloads
to various values of N . An optimal N will minimize the number
of coherence operations that occur when a program enters the write
phase for a cache block, but allows the block to be re-constituted
to the L1 level quickly when that write-phase ends. Blackscholes
shows the greatest sensitivity to the choice of the reconstitution pe-
riod. Choosing the wrong N can hurt performance from 10-30%.
The RSWEL Tune protocol is effective at keeping performance far
clear of the worst case for every benchmark, although it doesn’t
ever produce ideal performance.

6.6 Communication Latency Variation
SWEL and RSWEL can inject a higher number of flits into the

communication network than MESI for some workloads. As a re-

Figure 7: 16-core CPU Power Consumption, Including Net-
work and Bus

sult, network performance may be more critical to overall appli-
cation throughput for SWEL than with MESI based protocols. To
test this hypothesis we ran experiments, shown in Figure 6b, that
vary both the absolute and relative performance of our network and
broadcast bus delays. The X-axis of the graph lists the relative la-
tency of the communication mechanisms, compared to the baseline
latency parameters found in Table 1. For example 1/2 Net - 1/2 Bus
indicates that both the bus and network latency parameters are half
that of the baseline. 2x Net - 1/2 Bus indicates that we have made
the bus half the latency, but the interconnect network twice as slow.
The Y-axis lists the normalized average performance of all work-
loads. For each latency set, SWEL and RSWEL are normalized
to MESI performance using those same latencies, not the baseline
latencies.

The results in Figure 6b indicate that neither SWEL nor RSWEL
are sensitive to changes in bus latency. This is not surprising given
the extremely low bus utilization by all variations of SWEL. RSWEL
also appears to not be overly sensitive to network latency; this is a
function of the low N values we evaluate for optimal performance.
SWEL, however, is extremely sensitive to network latency because
of the higher number of flits it injects into the network compared to
both MESI and RSWEL as shown in Figure 5a.

6.7 Communication Power Comparison
Power consumption is an increasingly important metric as more

processing cores are fit into a CPU die and on-chip networks grow
in complexity. Figure 7 shows the power consumption of the on-
chip communication systems of the various protocols. SWEL’s
power requirement is greatly increased due to its increased L1 miss
rate; more address and especially data messages are sent across the
grid network in the SWEL scheme. SWEL, at its worst, is con-
tributing 2 W of power to the overall chip at 3 GHz and a 32 nm
process. This contribution will be even lower for the workloads
described in Section 1 that may have little global communication.

The RSWEL schemes perform more favorably compared to MESI,
but still have higher L1 miss rates and write address messages that
MESI doesn’t have. The broadcast bus did not contribute very sig-
nificantly to the power overhead of SWEL and RSWEL. The bus
is used infrequently enough, and its per-use energy requirement
low enough, that the grid network energy requirement greatly out-
weighs it. As can be seen in Table 1, one use of a 64-wide 5x5
router uses more energy than charging all 64 wires of the (low-
swing) broadcast bus.



7. RELATED WORK
Much prior work has been done analyzing and developing cache

coherence protocols. In an effort to reduce the directory storage
overhead, Zebchuk et al. [24] suggest a way to improve the die
area requirement of directory based coherence protocols by remov-
ing the tags in the directory and using bloom filters to represent the
contents of each cache. In this scheme, writes can be problematic
because they require that a new copy of the cache block be sent
from a provider to the requesting writer, and because of false pos-
itives caused by the bloom filter, this provider might not still have
a valid copy of the data in its cache. This happens infrequently in
practice, but when it does it can be solved by invalidating all copies
of the data and starting fresh with a new copy from main memory.
Stenström [21] shows a way to reduce the directory state used to
track sharers in directory based protocols. The SWEL protocol, in
contrast, changes the directory scaling to be linear with the number
of cache blocks only instead of scaling with both the number of
cache blocks and the number of sharers.

Brown et al. [6] present a method to accelerate coherence for an
architecture with multiple private L2 caches with a point-to-point
interconnect between cores. Directory coherence is used with mod-
ifications to improve the proximity of the node from which data
is fetched, thereby alleviating some of the issues of the directory
indirection overhead. Acacio et al. [1, 2] explore a directory pro-
tocol that uses prediction to attempt to find the current holder of
the block needed for both read and write misses. Eisley et al. [10]
place a directory in each node of the network to improve routing
and lower latency for coherence operations. An extra stage is added
to the routing computations to direct the head flit to the location of
the most up-to-date data. Hardavellas et al. [12] vary cache block
replication and placement within the last-level cache to minimize
the need for cache coherence and to increase effective cache capac-
ity. They too rely on a dynamic classification of pages as either
private or shared and as either data or instruction pages.

Some approaches exist to reduce the complexity of designing
coherence hardware by simply performing coherence through soft-
ware techniques. Yan et al. [23] do away entirely with hardware
cache coherence and instead require programmers or software pro-
filers to distinguish between data that is shared and written, and
data that is read only or private. These two classes of data are stored
in separate cache hierarchies, with all Shared R/W data accesses
incurring an expensive network traversal. Fensch and Cintra [11]
similarly argue that hardware cache coherence is not needed and
that the OS can efficiently manage the caches and keep them co-
herent. The L1s are kept coherent by only allowing one L1 to have
a copy of any given page of memory at a time. Replication is pos-
sible, but is especially expensive in this system.

Attempting to improve performance, Huh et al. [13, 14] propose
separating traditional cache coherence protocols into two parts: one
to allow speculative computations on the processor and a second
to enforce coherence and verify the correctness of the speculation.
However, anywhere from 10-60% of these speculative executions
are incorrect, making it frequently necessary to repeat the compu-
tation once the memory is brought into a coherent state. Martin et
al. [19] also aim to separate the correctness and performance parts
of the coherence protocol but do so by relying on token passing.
There are N tokens for each cache block, and a write requires the
acquisition of all N, while only one is needed to be a shared reader.

8. CONCLUSION
The class of memory accesses to private or read-only cache blocks

have little need for cache coherence, and only the Shared R/W

blocks require cache coherence. We devise novel cache coher-
ence protocols, SWEL and RSWEL, that attempt to place data in
their “optimal” location. Private or read-only blocks are allowed
to reside in L1 caches because they do not need cache coherence
operations. Written-Shared blocks are relegated to the L2 cache
where they do not require coherence either and service all requests
without the need for indirection. The coherence protocol is there-
fore more about the classifying blocks into categories, instead of
being about the tracking of sharers. This leads to a much sim-
pler and storage-efficient protocol. The penalty is that every mis-
categorization leads to recovery via a bus broadcast, an operation
that keeps the protocol simple and that is exercised relatively infre-
quently. We show that RSWEL can improve performance in a few
cases where read-write sharing is frequent, because of its elimina-
tion of indirection. It under-performs a MESI directory protocol
when there are frequent accesses to blocks that get relegated to the
L2. In terms of overall performance, MESI and RSWEL are very
comparable. While RSWEL incurs fewer coherence transactions
on the network, it experiences more L2 look-ups. The net result
is a slight increase in network power. Our initial analysis shows
that RSWEL is competitive with MESI in terms of performance
and slightly worse than MESI in terms of power, while doing better
than MESI in other regards (storage overhead, complexity). The
argument for RSWEL is strongest when multi-cores execute work-
loads that rarely require coherence (for example, multiple VMs or
message-passing programs). We believe that the exploration of ad-
ditional optimizations for RSWEL may enable it to exploit its full
potential. We believe that it is important to seriously consider the
merits of a protocol that shifts the protocol burden from “tracking
sharing vectors for each block” to “tracking the sharing nature for
each block”.
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