
1

Lecture: Synchronization, Consistency Models

• Topics: synchronization wrap-up,
need for sequential consistency, fences

2

Test-and-Test-and-Set

• lock: test register, location
bnz register, lock
t&s register, location
bnz register, lock
CS
st location, #0

3

Load-Linked and Store Conditional

• LL-SC is an implementation of atomic read-modify-write
with very high flexibility

• LL: read a value and update a table indicating you have
read this address, then perform any amount of computation

• SC: attempt to store a result into the same memory location,
the store will succeed only if the table indicates that no
other process attempted a store since the local LL (success
only if the operation was “effectively” atomic)

• SC implementations do not generate bus traffic if the
SC fails – hence, more efficient than test&test&set

4

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
BNEZ R2, lockit ; not available, keep spinning
DADDUI R2, R0, #1 ; put value 1 in R2
SC R2, 0(R1) ; store-conditional succeeds if no one

; updated the lock since the last LL
BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
bus transactions happen?

5

Spin Lock with Low Coherence Traffic

lockit: LL R2, 0(R1) ; load linked, generates no coherence traffic
BNEZ R2, lockit ; not available, keep spinning
DADDUI R2, R0, #1 ; put value 1 in R2
SC R2, 0(R1) ; store-conditional succeeds if no one

; updated the lock since the last LL
BEQZ R2, lockit ; confirm that SC succeeded, else keep trying

• If there are i processes waiting for the lock, how many
bus transactions happen?
1 write by the releaser + i (or 1) read-miss requests +
i (or 1) responses + 1 write by acquirer + 0 (i-1 failed SCs) +
i-1 (or 1) read-miss requests + i-1 (or 1) responses

(The i/i-1 read misses and responses can be reduced to 1)

6

Lock Vs. Optimistic Concurrency

lockit: LL R2, 0(R1)
BNEZ R2, lockit
DADDUI R2, R0, #1
SC R2, 0(R1)
BEQZ R2, lockit
Critical Section

ST 0(R1), #0

tryagain: LL R2, 0(R1)
DADDUI R2, R2, R3
SC R2, 0(R1)
BEQZ R2, tryagain

LL-SC is being used to figure out
if we were able to acquire the lock
without anyone interfering – we
then enter the critical section

If the critical section only involves
one memory location, the critical
section can be captured within the
LL-SC – instead of spinning on the
lock acquire, you may now be spinning
trying to atomically execute the CS

7

Coherence Vs. Consistency

• Recall that coherence guarantees (i) that a write will
eventually be seen by other processors, and (ii) write
serialization (all processors see writes to the same location
in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

8

Example Programs

Initially, A = B = 0

P1 P2
A = 1 B = 1
if (B == 0) if (A == 0)

critical section critical section

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

Initially, Head = Data = 0

P1 P2
Data = 2000 while (Head == 0)
Head = 1 { }

… = Data

9

Sequential Consistency

P1 P2
Instr-a Instr-A
Instr-b Instr-B
Instr-c Instr-C
Instr-d Instr-D
… …

We assume:
• Within a program, program order is preserved
• Each instruction executes atomically
• Instructions from different threads can be interleaved arbitrarily

Valid executions:
abAcBCDdeE… or ABCDEFabGc… or abcAdBe… or
aAbBcCdDeE… or …..

10

Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1 Thread 2
x = 10 y=20
y = x+y x = y+x
Print y

11

Problem 1

• What are possible outputs for the program below?

Assume x=y=0 at the start of the program

Thread 1 Thread 2
A x = 10 a y=20
B y = x+y b x = y+x
C Print y

Possible scenarios: 5 choose 2 = 10
ABCab ABaCb ABabC AaBCb AaBbC

10 20 20 30 30
AabBC aABCb aABbC aAbBC abABC

50 30 30 50 30

12

Sequential Consistency

• Programmers assume SC; makes it much easier to
reason about program behavior

• Hardware innovations can disrupt the SC model

• For example, if we assume write buffers, or out-of-order
execution, or if we drop ACKS in the coherence protocol,
the previous programs yield unexpected outputs

13

Consistency Example - I

• An ooo core will see no dependence between instructions
dealing with A and instructions dealing with B; those
operations can therefore be re-ordered; this is fine for a
single thread, but not for multiple threads

Initially A = B = 0
P1 P2

A 1 B 1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

14

Consistency Example - 2

Initially, A = B = 0

P1 P2 P3
A = 1

if (A == 1)
B = 1

if (B == 1)
register = A

If a coherence invalidation didn’t require ACKs, we can’t
confirm that everyone has seen the value of A.

15

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achievable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read – very intuitive for
the programmer, but extremely slow

• This is very slow… alternatives:
 Add optimizations to the hardware (e.g., verify loads)
 Offer a relaxed memory consistency model and fences

16

Relaxed Consistency Models

• We want an intuitive programming model (such as
sequential consistency) and we want high performance

• We care about data races and re-ordering constraints for
some parts of the program and not for others – hence,
we will relax some of the constraints for sequential
consistency for most of the program, but enforce them
for specific portions of the code

• Fence instructions are special instructions that require
all previous memory accesses to complete before
proceeding (sequential consistency)

17

Fences

P1 P2
{ {
Region of code Region of code
with no races with no races

} }

Fence Fence
Acquire_lock Acquire_lock

Fence Fence

{ {
Racy code Racy code

} }

Fence Fence
Release_lock Release_lock

Fence Fence

18

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

