Lecture: Security

• Topics: Spectre and Meltdown attacks, information leakage, integrity verification
UMA

- High Bandwidth Memory uses wiring on a silicon substrate (interposer) to achieve high bandwidth; uses 3D-stacked memory chips to increase capacity on the substrate.

- Apple UMA uses similar technology to connect the processor and GPU to high-bandwidth memory – both can access the same memory, so no copies needed.

Source: Natalie Enright Jerger, sigarch.org/blog
Hardware Security

• Several types of attacks: physical access to hardware, compromised OS, untrusted co-scheduled applications

• Defenses include: hardware permission checks, encryption, microarchitecture partitions, signature checks, trusted execution environments like Intel SGX

• Information leakage still unresolved – exploited by Meltdown, Spectre, and many subsequent attacks
Meltdown

Attacker code

Fill the cache with your own data X

`lw` R1 \leftarrow [illegal address]
`lw` ... \leftarrow [R1]

Scan through X and record time per access
Spectre: Variant 1

if \(x < array1_size \)
\[
y = array2[\ array1[x]];
\]

Thanks to bpred, \(x \) can be anything

\(array1[\] \) is the secret

Access pattern of \(array2[\] \) betrays the secret

\(x \) is controlled by attacker

Victim Code
Spectre: Variant 2

Attacker code

Label0: if (1)

Label1: ...

Variation code

R1 ← (from attacker)
R2 ← some secret
Label0: if (…)

... ...

Victim code

Label1:
lw [R2]
Defenses

• Disable speculation when violations happen (fixes Meltdown)
• Partition resources – has a performance impact
• Several resources involved: bpred, caches, memory controller
• Constant behavior algorithms
Memory Integrity Verification

• Implemented on commercial processors, e.g., Intel SGX

• Confirms that data has not been tampered by malicious agents – attacker with physical access, rogue OS

• Every block has a MAC and a version number

• To prevent a replay attack (attacker sends an old version of data/MAC/counter), a tree of hashes is navigated
Bonsai Merkle Tree

Data Block

Counters

Hash

Hash

Hash

MAC