Lecture: Pipelining Basics

• Topics: Basic pipelining implementation, performance equations

• Reminder: HW1 due Thursday 11:59pm
Performance Metrics Recap

- Performance summaries: AM of weighted exec times, GM
- AM of IPCs, HM of IPCs (AM of CPIs), GM of IPCs
- Speedup (ratio), performance improvement (ratio – 1)
- CPU time = cycle time x CPI x #instructions
Building a Car

Unpipelined

Start and finish a job before moving to the next

Jobs

Time
The Assembly Line

Pipelined

Break the job into smaller stages

Jobs

Time
Clocks and Latches

Stage 1

Stage 2
Clocks and Latches

Stage 1 → L → Stage 2

Clk
Some Equations

- Unpipelined: time to execute one instruction = $T + T_{ovh}$
- For an N-stage pipeline, time per stage = $T/N + T_{ovh}$
- Total time per instruction = $N \left(\frac{T}{N} + T_{ovh}\right) = T + N \cdot T_{ovh}$
- Clock cycle time = $T/N + T_{ovh}$
- Clock speed = $1 / \left(T/N + T_{ovh}\right)$
- Ideal speedup = $\frac{T + T_{ovh}}{T/N + T_{ovh}}$
- Cycles to complete one instruction = N
- Average CPI (cycles per instr) = 1
Problem 1

- An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 equal sequential pipeline stages. Answer the following, assuming that there are no stalls in the pipeline.

- What are the cycle times in the two processors?
- What are the clock speeds?
- What are the IPCs?
- How long does it take to finish one instr?
- What is the speedup from pipelining?
Problem 1

- An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 equal sequential pipeline stages. Answer the following, assuming that there are no stalls in the pipeline.

- What are the cycle times in the two processors?
 5.2ns and 1.2ns
- What are the clock speeds? 192 MHz and 833 MHz
- What are the IPCs? 1 and 1
- How long does it take to finish one instr? 5.2 ns and 6 ns
- What is the speedup from pipelining? $\frac{833}{192} = 4.34$
Problem 2

• An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 sequential pipeline stages. The stages have the following lengths: 1ns; 0.6ns; 1.2ns; 1.4ns; 0.8ns. Answer the following, assuming that there are no stalls in the pipeline.

- What is the cycle time in the new processor?
- What is the clock speed?
- What is the IPC?
- How long does it take to finish one instr?
- What is the speedup from pipelining?
- What is the max speedup from pipelining?
Problem 2

An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 sequential pipeline stages. The stages have the following lengths: 1ns; 0.6ns; 1.2ns; 1.4ns; 0.8ns. Answer the following, assuming that there are no stalls in the pipeline.

- What is the cycle time in the new processor? 1.6ns
- What is the clock speed? 625 MHz
- What is the IPC? 1
- How long does it take to finish one instr? 8ns
- What is the speedup from pipelining? \(\frac{625}{192} = 3.26 \)
- What is the max speedup from pipelining? \(\frac{5.2}{0.2} = 26 \)
Pipelining Curves
A 5-Stage Pipeline

Source: H&P textbook
A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4
A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume branches take 2 cyc (there is enough work that branches can easily take more)
A 5-Stage Pipeline

ALU computation, effective address computation for load/store
A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles
A 5-Stage Pipeline

Write result of ALU computation or load into register file