Lecture: Pipelining Basics

- Topics: Basic pipelining implementation, performance equations

- Reminder: HW1 due Thursday 11:50pm
Building a Car

Unpipelined

Start and finish a job before moving to the next
The Assembly Line

Pipelined

Break the job into smaller stages

Jobs

Time
Clocks and Latches

Stage 1 → Stage 2
Clocks and Latches

Stage 1 → L → Stage 2

Clk
Some Equations

- Unpipelined: time to execute one instruction = $T + T_{ovh}$
- For an N-stage pipeline, time per stage = $T/N + T_{ovh}$
- Total time per instruction = $N (T/N + T_{ovh}) = T + N \cdot T_{ovh}$
- Clock cycle time = $T/N + T_{ovh}$
- Clock speed = $1 / (T/N + T_{ovh})$
- Ideal speedup = $(T + T_{ovh}) / (T/N + T_{ovh})$
- Cycles to complete one instruction = N
- Average CPI (cycles per instr) = 1
Problem 1

- An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 equal sequential pipeline stages. Answer the following, assuming that there are no stalls in the pipeline.

- What are the cycle times in the two processors?
- What are the clock speeds?
- What are the IPCs?
- How long does it take to finish one instr?
- What is the speedup from pipelining?
Problem 1

- An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 equal sequential pipeline stages. Answer the following, assuming that there are no stalls in the pipeline.

- What are the cycle times in the two processors? 5.2ns and 1.2ns
- What are the clock speeds? 192 MHz and 833 MHz
- What are the IPCs? 1 and 1
- How long does it take to finish one instr? 5.2ns and 6ns
- What is the speedup from pipelining? $833/192 = 4.34$
Problem 2

• An unpipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 sequential pipeline stages. The stages have the following lengths: 1ns; 0.6ns; 1.2ns; 1.4ns; 0.8ns. Answer the following, assuming that there are no stalls in the pipeline.

- What is the cycle time in the new processor?
- What is the clock speed?
- What is the IPC?
- How long does it take to finish one instr?
- What is the speedup from pipelining?
- What is the max speedup from pipelining?
Problem 2

• An unipipelined processor takes 5 ns to work on one instruction. It then takes 0.2 ns to latch its results into latches. I was able to convert the circuits into 5 sequential pipeline stages. The stages have the following lengths: 1ns; 0.6ns; 1.2ns; 1.4ns; 0.8ns. Answer the following, assuming that there are no stalls in the pipeline.

 ▪ What is the cycle time in the new processor? 1.6ns
 ▪ What is the clock speed? 625 MHz
 ▪ What is the IPC? 1
 ▪ How long does it take to finish one instr? 8ns
 ▪ What is the speedup from pipelining? 625/192 = 3.26
 ▪ What is the max speedup from pipelining? 5.2/0.2 = 26
A 5-Stage Pipeline

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

IM Reg ALU DM Reg IM

IM Reg ALU DM Reg IM

IM Reg ALU DM Reg IM

Source: H&P textbook
A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4
A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume branches take 2 cyc (there is enough work that branches can easily take more)
A 5-Stage Pipeline

ALU computation, effective address computation for load/store
A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles
A 5-Stage Pipeline

Write result of ALU computation or load into register file
RISC/CISC Loads/Stores

Registers and memory
Complex and reduced instrs
Format of a load/store