
1

Lecture 20: Branches, OOO

• Today’s topics:

 Branch prediction
 Out-of-order execution
 (Also see class notes on pipelining, hazards, etc.)

2

Problem 4 – no Byp

IF Dec ALU

DM RWALU DM

RW

lw $1, 8($2)

 add $4, $1, $3

IF Dec RR

A 7 or 9 stage pipeline, RR and RW take an entire stage

3

Problem 4 – with Byp

IF Dec ALU

DM RWALU DM

RW

lw $1, 8($2)

 add $4, $1, $3

IF Dec RR

A 7 or 9 stage pipeline, RR and RW take an entire stage

4

Problem 4

IF Dec ALU

DM RWALU DM

RW
lw $1, 8($2)

 add $4, $1, $3
IF Dec RR

Without bypassing: 4 stalls
 IF:IF:DE:DE:RR:AL:DM:DM:RW
 IF: IF :DE:DE:DE:DE: DE :DE:RR:AL:RW

With bypassing: 2 stalls
 IF:IF:DE:DE:RR:AL:DM:DM:RW
 IF: IF :DE:DE:DE:DE: RR :AL:RW

5

Pipelining Example (Recap)

• Unpipelined design: the entire circuit takes 10ns to finish
 Cycle time = 10ns; Clock speed = 1/10ns = 100 MHz
 CPI = 1 (assuming no stalls)
 Throughput in instructions per second =
 #cycles in a second x instructions-per-cycle =
 100 M x 1 = 100 M instrs per second = 0.1 BIPS (billion instrs per sec)

• 5-stage pipeline: under ideal conditions, each stage takes 2ns
 Cycle time = 2ns; Clock speed = 1/2ns = 500 MHz (5x higher)
 CPI = 1 (continuing to assume no stalls)
 Throughput = # cycles in a second x instrs-per-cycle
 = 500 M x 1 = 500 MIPS = 0.5 BIPS
 Under ideal conditions, a 5-stage pipeline gives a 5x speedup.

6

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every
 6th instruction is a branch!)
 assume the branch is not taken and start fetching the
 next instruction – if the branch is taken, need hardware
 to cancel the effect of the wrong-path instruction
 fetch the next instruction (branch delay slot) and
 execute it anyway – if the instruction turns out to be
 on the correct path, useful work was done – if the
 instruction turns out to be on the wrong path,
 hopefully program state is not lost
 make a smarter guess and fetch instructions from the
 expected target

7

Control Hazards

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

8

Branch Delay Slots

Source: H&P textbook

9

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

10

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor

11

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

12

2-Bit Prediction

• For each branch, maintain a 2-bit saturating counter:
 if the branch is taken: counter = min(3,counter+1)
 if the branch is not taken: counter = max(0,counter-1)
 … sound familiar?

• If (counter >= 2), predict taken, else predict not taken

• The counter attempts to capture the common case for
 each branch

Indexing functions
Multiple branch predictors
History, trade-offs

13

Slowdowns from Stalls

• Perfect pipelining with no hazards an instruction
 completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
 during which no instruction completes, and then the stalled
 instruction completes

• Total cycles = number of instructions + stall cycles

14

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
 number of stages

• Instructions can now complete out of order – must make sure
 that writes to a register happen in the correct order

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

