
1

Lecture 16: Basic Pipelining

• Today’s topics:

 5-stage pipeline
 Hazards

2

Midterm Prep

• In-class midterm 2 weeks away
• Prep: homework, notes/slides/examples, videos, sample midterm
• 80% homeworks, 10% brief concept questions, 10% difficult/new
• Time constrained
• MIPS assembly questions
• Single sheet of notes (both sides) – green sheet allowed
• Phone/calculator allowed for calculations
• 90 minute test – 10:40 – 12:10

3

Multi-Stage Circuit

• Instead of executing the entire instruction in a single
 cycle (a single stage), let’s break up the execution into
 multiple stages, each separated by a latch

PC Instr
Mem ALU Data

MemoryL2 Reg
File L3 L4

Reg
File

L5

4

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined

5

Performance Improvements?

• Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

• What assumptions were made while answering these
 questions?

• Is a 10-stage pipeline better than a 5-stage pipeline?

6

A 5-Stage Pipeline

Source: H&P textbook

7

A 5-Stage Pipeline

Use the PC to access the I-cache and increment PC by 4

8

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

9

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

10

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

11

A 5-Stage Pipeline

Write result of ALU computation or load into register file

12

Pipeline Summary

RR ALU DM RW

ADD R1, R2, R3 Rd R1,R2 R1+R2 -- Wr R3

BEQ R1, R2, 100 Rd R1, R2 -- -- --
 Compare, Set PC

LD 8[R3] R6 Rd R3 R3+8 Get data Wr R6

ST 8[R3] R6 Rd R3,R6 R3+8 Wr data --

13

Performance Improvements?

• Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

• What assumptions were made while answering these
 questions?

– No dependences between instructions
– Easy to partition circuits into uniform pipeline stages
– No latch overhead

• Is a 10-stage pipeline better than a 5-stage pipeline?

14

Quantitative Effects

• As a result of pipelining:
 Time in ns per instruction goes up
 Each instruction takes more cycles to execute
 But… average CPI remains roughly the same
 Clock speed goes up
 Total execution time goes down, resulting in lower
 average time per instruction
 Under ideal conditions, speedup
 = ratio of elapsed times between successive instruction
 completions
 = number of pipeline stages = increase in clock speed

15

Conflicts/Problems

• I-cache and D-cache are accessed in the same cycle – it
 helps to implement them separately

• Registers are read and written in the same cycle – easy to
 deal with if register read/write time equals cycle time/2

• Branch target changes only at the end of the second stage
 -- what do you do in the meantime?

16

Hazards

• Structural hazards: different instructions in different stages
 (or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
 needs a value that has not yet been generated by an
 earlier instruction

• Control hazard: fetch cannot continue because it does
 not know the outcome of an earlier branch – special case
 of a data hazard – separate category because they are
 treated in different ways

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

