Lecture 9: Addition, Multiplication \& Division

- Today's topics:
- Addition
- Multiplication
- Division

Addition and Subtraction

- Addition is similar to decimal arithmetic
- For subtraction, simply add the negative number - hence, subtract A-B involves negating B's bits, adding 1 and A

Overflows

- For an unsigned number, overflow happens when the last carry (1) cannot be accommodated
- For a signed number, overflow happens when the most significant bit is not the same as every bit to its left
- when the sum of two positive numbers is a negative result
- when the sum of two negative numbers is a positive result
- The sum of a positive and negative number will never overflow
- MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow - to detect the overflow, other instructions will have to be executed

Multiplication Example

Multiplicand
Multiplier

Product

1000
0000
0000
1000
$1001000_{\text {ten }}$

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1 , shifted multiplicand is added to the product

HW Algorithm 1

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1 , shifted multiplicand is added to the product

HW Algorithm 2

Source: H\&P textbook

- 32-bit ALU and multiplicand is untouched
- the sum keeps shifting right
- at every step, number of bits in product + multiplier $=64$, hence, they share a single 64-bit register

Notes

- The previous algorithm also works for signed numbers (negative numbers in 2's complement form)
- We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree
- The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit registers

MIPS Instructions

mult \$s2, \$s3

mfhi \$s0
 mflo \$s1

computes the product and stores it in two "internal" registers that can be referred to as hi and lo
moves the value in hi into $\$ \mathrm{~s} 0$
moves the value in lo into \$s1

Similarly for multu

Fast Algorithm

- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs - it then has to wait for the result of each add to propagate down - faster because no clock is involved
-- Note: high transistor cost

Division

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division

Divisor $1000_{\text {ten }}$\begin{tabular}{lll}
\& \multicolumn{2}{c}{$1001_{\text {ten }}-1001010_{\text {ten }}$}

Quotient

Dividend
\end{tabular}

$\quad 0001001010$
$100000000000 \rightarrow 0001001010$
Quo: 0

At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Divide Example

- Divide $7_{\text {ten }}\left(00000111_{\text {two }}\right)$ by $2_{\text {ten }}\left(0010_{\text {two }}\right)$

Iter	Step	Quot	Divisor	Remainder
0	Initial values			
1				
2				
3				
4				
5				

Divide Example

- Divide $7_{\text {ten }}\left(00000111_{\text {two }}\right)$ by $2_{\text {ten }}\left(0010_{\text {two }}\right)$

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	00100000	00000111
1	Rem = Rem - Div	0000	00100000	11100111
	Rem < 0 \rightarrow +Div, shift 0 into Q	0000	00100000	00000111
	Shift Div right	0000	00010000	00000111
2	Same steps as 1	0000	00010000	11110111
		0000	00010000	00000111
		0000	00001000	00000111
3	Same steps as 1	0000	00000100	00000111
4	Rem = Rem - Div	0000	00000100	00000011
	Rem >=0 \rightarrow shift 1 into Q	0001	00000100	00000011
	Shift Div right	0001	00000010	00000011
5	Same steps as 4	0011	00000001	00000001

