
1

Lecture 27: Pot-Pourri

• Today’s topics:
 Consistency Models
 Shared memory vs message-passing
 Simultaneous multi-threading (SMT)
 GPUs
 Accelerators
 Disks and reliability

2

Relaxed Consistency

• Sequential consistency is very slow

• The programming complications/surprises are caused when the
program has race conditions (two threads dealing with same
data and at least one of the threads is modifying the data)

• If programmers are disciplined and enforce mutual exclusion
when dealing with shared data, we can allow some re-orderings
and higher performance

• This is effective at balancing performance & programming effort

3

Shared-Memory Vs. Message-Passing

Shared-memory:
• Well-understood programming model
• Communication is implicit and hardware handles protection
• Hardware-controlled caching

Message-passing:
• No cache coherence simpler hardware
• Explicit communication easier for the programmer to

restructure code
• Software-controlled caching
• Sender can initiate data transfer

4

Ocean Kernel

Procedure Solve(A)
begin

diff = done = 0;
while (!done) do

diff = 0;
for i 1 to n do

for j 1 to n do
temp = A[i,j];
A[i,j] 0.2 * (A[i,j] + neighbors);
diff += abs(A[i,j] – temp);

end for
end for
if (diff < TOL) then done = 1;

end while
end procedure

.
.

Row 1

Row k

Row 2k

Row 3k
…

5

Shared Address Space Model

int n, nprocs;
float **A, diff;
LOCKDEC(diff_lock);
BARDEC(bar1);

main()
begin

read(n); read(nprocs);
A G_MALLOC();
initialize (A);
CREATE (nprocs,Solve,A);
WAIT_FOR_END (nprocs);

end main

procedure Solve(A)
int i, j, pid, done=0;
float temp, mydiff=0;
int mymin = 1 + (pid * n/procs);
int mymax = mymin + n/nprocs -1;
while (!done) do

mydiff = diff = 0;
BARRIER(bar1,nprocs);
for i mymin to mymax

for j 1 to n do
…

endfor
endfor
LOCK(diff_lock);
diff += mydiff;
UNLOCK(diff_lock);
BARRIER (bar1, nprocs);
if (diff < TOL) then done = 1;
BARRIER (bar1, nprocs);

endwhile

6

Message Passing Model

main()
read(n); read(nprocs);
CREATE (nprocs-1, Solve);
Solve();
WAIT_FOR_END (nprocs-1);

procedure Solve()
int i, j, pid, nn = n/nprocs, done=0;
float temp, tempdiff, mydiff = 0;
myA malloc(…)
initialize(myA);
while (!done) do

mydiff = 0;
if (pid != 0)
SEND(&myA[1,0], n, pid-1, ROW);

if (pid != nprocs-1)
SEND(&myA[nn,0], n, pid+1, ROW);

if (pid != 0)
RECEIVE(&myA[0,0], n, pid-1, ROW);

if (pid != nprocs-1)
RECEIVE(&myA[nn+1,0], n, pid+1, ROW);

for i 1 to nn do
for j 1 to n do

…
endfor

endfor
if (pid != 0)
SEND(mydiff, 1, 0, DIFF);
RECEIVE(done, 1, 0, DONE);

else
for i 1 to nprocs-1 do

RECEIVE(tempdiff, 1, *, DIFF);
mydiff += tempdiff;

endfor
if (mydiff < TOL) done = 1;
for i 1 to nprocs-1 do

SEND(done, 1, I, DONE);
endfor

endif
endwhile

7

Multithreading Within a Processor

• Until now, we have executed multiple threads of an
application on different processors – can multiple
threads execute concurrently on the same processor?

• Why is this desireable?
 inexpensive – one CPU, no external interconnects
 no remote or coherence misses (more capacity misses)

• Why does this make sense?
most processors can’t find enough work – peak IPC

is 6, average IPC is 1.5!
 threads can share resources we can increase

threads without a corresponding linear increase in area

8

How are Resources Shared?

Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC.

Cycles

• Superscalar processor has high under-utilization – not enough work every
cycle, especially when there is a cache miss

• Fine-grained multithreading can only issue instructions from a single thread
in a cycle – can not find max work every cycle, but cache misses can be tolerated

• Simultaneous multithreading can issue instructions from any thread every
cycle – has the highest probability of finding work for every issue slot

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

9

Performance Implications of SMT

• Single thread performance is likely to go down (caches,
branch predictors, registers, etc. are shared) – this effect
can be mitigated by trying to prioritize one thread

• With eight threads in a processor with many resources,
SMT yields throughput improvements of roughly 2-4

10

SIMD Processors

• Single instruction, multiple data

• Such processors offer energy efficiency because a single
instruction fetch can trigger many data operations

• Such data parallelism may be useful for many
image/sound and numerical applications

11

GPUs

• Initially developed as graphics accelerators; now viewed
as one of the densest compute engines available

• Many on-going efforts to run non-graphics workloads on
GPUs, i.e., use them as general-purpose GPUs or GPGPUs

• C/C++ based programming platforms enable wider use
of GPGPUs – CUDA from NVidia and OpenCL from an
industry consortium

• A heterogeneous system has a regular host CPU and a
GPU that handles (say) CUDA code (they can both be
on the same chip)

12

GPUs

13

The GPU Architecture

• SIMT – single instruction, multiple thread; a GPU has
many SIMT cores

• A large data-parallel operation is partitioned into many
thread blocks (one per SIMT core); a thread block is
partitioned into many warps (one warp running at a
time in the SIMT core); a warp is partitioned across many
in-order pipelines (each is called a SIMD lane)

• A SIMT core can have multiple active warps at a time,
i.e., the SIMT core stores the registers for each warp;
warps can be context-switched at low cost; a warp
scheduler keeps track of runnable warps and schedules
a new warp if the currently running warp stalls

14

The GPU Architecture

15

Architecture Features

• Simple in-order pipelines that rely on thread-level parallelism
to hide long latencies

• Many registers (~1K) per in-order pipeline (lane) to support
many active warps

• When a branch is encountered, some of the lanes proceed
along the “then” case depending on their data values;
later, the other lanes evaluate the “else” case; a branch
cuts the data-level parallelism by half (branch divergence)

• When a load/store is encountered, the requests from all
lanes are coalesced into a few 128B cache line requests;
each request may return at a different time (mem divergence)

16

GPU Memory Hierarchy

• Each SIMT core has a private L1 cache (shared by the
warps on that core)

• A large L2 is shared by all SIMT cores; each L2 bank
services a subset of all addresses

• Each L2 partition is connected to its own memory
controller and memory channel

• The GDDR5 memory system runs at higher frequencies,
and uses chips with more banks, wide IO, and better
power delivery networks

• A portion of GDDR5 memory is private to the GPU and the
rest is accessible to the host CPU (the GPU performs copies)

17

Accelerators - Tesla FSD

Image Source: Tesla

18

Role of Disks

• Activities external to the CPU/memory are typically
orders of magnitude slower

• Example: while CPU performance has improved by 50%
per year, disk latencies have improved by 10% every year

• Typical strategy on I/O: switch contexts and work on
something else

• Other metrics, such as bandwidth, reliability, availability,
and capacity, often receive more attention than performance

19

Magnetic Disks

• A magnetic disk consists of 1-12 platters (metal or glass
disk covered with magnetic recording material on both
sides), with diameters between 1-3.5 inches

• Each platter is comprised of concentric tracks (5-30K) and
each track is divided into sectors (100 – 500 per track,
each about 512 bytes)

• A movable arm holds the read/write heads for each disk
surface and moves them all in tandem – a cylinder of data
is accessible at a time

20

Disk Latency

• To read/write data, the arm has to be placed on the
correct track – this seek time usually takes 5 to 12 ms
on average – can take less if there is spatial locality

• Rotational latency is the time taken to rotate the correct
sector under the head – average is typically more than
2 ms (15,000 RPM)

• Transfer time is the time taken to transfer a block of bits
out of the disk and is typically 3 – 65 MB/second

• A disk controller maintains a disk cache (spatial locality
can be exploited) and sets up the transfer on the bus
(controller overhead)

21

Defining Reliability and Availability

• A system toggles between
 Service accomplishment: service matches specifications
 Service interruption: service deviates from specs

• The toggle is caused by failures and restorations

• Reliability measures continuous service accomplishment
and is usually expressed as mean time to failure (MTTF)

• Availability measures fraction of time that service matches
specifications, expressed as MTTF / (MTTF + MTTR)

22

RAID

• Reliability and availability are important metrics for disks

• RAID: redundant array of inexpensive (independent) disks

• Redundancy can deal with one or more failures

• Each sector of a disk records check information that allows
it to determine if the disk has an error or not (in other words,
redundancy already exists within a disk)

• When the disk read flags an error, we turn elsewhere for
correct data

23

RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
uses an array of disks and stripes (interleaves) data
across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
happens to two disks

• Reads to the mirror may happen only when the primary
disk fails – or, you may try to read both together and the
quicker response is accepted

• Expensive solution: high reliability at twice the cost

24

RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism

25

RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data

26

RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
writes

27

RAID Summary

• RAID 1-5 can tolerate a single fault – mirroring (RAID 1)
has a 100% overhead, while parity (RAID 3, 4, 5) has
modest overhead

• Can tolerate multiple faults by having multiple check
functions – each additional check can cost an additional
disk (RAID 6)

• RAID 6 and RAID 2 (memory-style ECC) are not
commercially employed

28

Memory Protection

• Most common approach: SECDED – single error correction,
double error detection – an 8-bit code for every 64-bit word
-- can correct a single error in any 64-bit word – also used
in caches

• Extends a 64-bit memory channel to a 72-bit channel and
requires ECC DIMMs (e.g., a word is fetched from 9 chips
instead of 8)

• Chipkill is a form of error protection where failures in an
entire memory chip can be corrected

29

Computation Errors – TMR

• Errors in ALUs and cores are typically handled by
performing the computation n times and voting for the
correct answer

• n=3 is common and is referred to as triple modular
redundancy

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

