
1

Lecture 26: Multiprocessors

• Today’s topics:
 Snooping-based coherence
 Synchronization
 Consistency

2

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

3

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Rd Miss Rd X Memory S Inv Inv Inv

P2: Rd X Rd Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Wr Miss Wr X P2 responds Inv Inv M Inv

P3: Rd X Rd Hit - - Inv Inv M Inv

P4: Rd X Rd Miss Rd X P3 responds.
Mem wrtbk

Inv Inv S S

4

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

5

Constructing Locks

• Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions

6

Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory
(if memory has 0, lock is free)

• lock: t&s register, location
bnz register, lock
CS

st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS

7

Coherence Vs. Consistency

• Coherence guarantees (i) write propagation
(a write will eventually be seen by other processors), and
(ii) write serialization (all processors see writes to the
same location in the same order)

• The consistency model defines the ordering of writes and
reads to different memory locations – the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with
those assumptions

8

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1 P2

A 1 B 1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

9

Consistency Example

• Consider a multiprocessor with bus-based snooping cache
coherence

Initially A = B = 0
P1 P2

A 1 B 1
… …

if (B == 0) if (A == 0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a

lock – because of ooo, both processors
can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities

10

Sequential Consistency

• A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

• The multiprocessor in the previous example is not
sequentially consistent

• Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read – very intuitive for
the programmer, but extremely slow

11

Relaxed Consistency

• Sequential consistency is very slow

• The programming complications/surprises are caused when the
program has race conditions (two threads dealing with same
data and at least one of the threads is modifying the data)

• If programmers are disciplined and enforce mutual exclusion
when dealing with shared data, we can allow some re-orderings
and higher performance

• This is effective at balancing performance & programming effort

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

