Lecture 8: Number Crunching

• Today’s topics:
 ▪ MARS wrap-up
 ▪ RISC vs. CISC
 ▪ Numerical representations
 ▪ Signed/Unsigned
Example Print Routine

.data
 str: .asciiz “the answer is ”
.text
 li $v0, 4 # load immediate; 4 is the code for print_string
 la $a0, str # the print_string syscall expects the string
 # address as the argument; la is the instruction
 # to load the address of the operand (str)
 syscall # MARS will now invoke syscall-4
 li $v0, 1 # syscall-1 corresponds to print_int
 li $a0, 5 # print_int expects the integer as its argument
 syscall # MARS will now invoke syscall-1
Example

• Write an assembly program to prompt the user for two numbers and print the sum of the two numbers
Example

.data
str1: .asciiz "Enter 2 numbers:"
str2: .asciiz "The sum is "

.text
li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall
IA-32 Instruction Set

- Intel’s IA-32 instruction set has evolved over 20 years – old features are preserved for software compatibility

- Numerous complex instructions – complicates hardware design (Complex Instruction Set Computer – CISC)

- Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written

- RISC instructions are more amenable to high performance (clock speed and parallelism) – modern Intel processors convert IA-32 instructions into simpler micro-operations
Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
Register: 7f 87 7b 45
Most-significant bit \rightarrow Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
Register: 45 7b 87 7f
Most-significant bit \rightarrow Least-significant bit (MIPS, IBM)
Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity

$$0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + \ldots + 1 \times 2^{0}$$

• A 32-bit word can represent 2^{32} numbers between 0 and $2^{32}-1$

... this is known as the unsigned representation as we’re assuming that numbers are always positive
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
 - In binary: 30 bits \((2^{30} > 1 \text{ billion})\)
 - In ASCII: 10 characters, 8 bits per char = 80 bits
Negative Numbers

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

0000 0000 0000 0000 0000 0000 0000 0000 $two = 0_{ten}$
0000 0000 0000 0000 0000 0000 0000 0001 $two = 1_{ten}$

...
0111 1111 1111 1111 1111 1111 1111 1111 $two = 2^{31}-1$

1000 0000 0000 0000 0000 0000 0000 0000 $two = -2^{31}$
1000 0000 0000 0000 0000 0000 0000 0001 $two = -(2^{31} - 1)$
1000 0000 0000 0000 0000 0000 0000 0010 $two = -(2^{31} - 2)$

...
1111 1111 1111 1111 1111 1111 1111 1110 $two = -2$
1111 1111 1111 1111 1111 1111 1111 1111 $two = -1$
2’s Complement

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000</td>
<td>0_{ten}</td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0001</td>
<td>1_{ten}</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111</td>
<td>2^{31} - 1</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0001</td>
<td>-(2^{31} - 1)</td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0010</td>
<td>-(2^{31} - 2)</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1110</td>
<td>-2</td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111</td>
<td>-1</td>
</tr>
</tbody>
</table>

Why is this representation favorable?

Consider the sum of 1 and -2 we get -1

Consider the sum of 2 and -1 we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity

\[x_{31} \cdot 2^{31} + x_{30} \cdot 2^{30} + x_{29} \cdot 2^{29} + \ldots + x_1 \cdot 2^1 + x_0 \cdot 2^0 \]
2’s Complement

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

$x + x' = -1$

$x' + 1 = -x$... hence, can compute the negative of a number by inverting all bits and adding 1

Similarly, the sum of x and $-x$ gives us all zeroes, with a carry of 1

In reality, $x + (-x) = 2^n$... hence the name 2’s complement
Example

• Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6
Example

- Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6

 5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the number 5
Signed / Unsigned

- The hardware recognizes two formats:

 unsigned (corresponding to the C declaration `unsigned int`) -- all numbers are positive, a 1 in the most significant bit just means it is a really large number

 signed (C declaration is `signed int` or just `int`) -- numbers can be +/- , a 1 in the MSB means the number is negative

This distinction enables us to represent twice as many numbers when we’re sure that we don’t need negatives
Consider a comparison instruction:

```
slt $t0, $t1, $zero
```

and $t1 contains the 32-bit number 1111 01...01

What gets stored in $t0?
MIPS Instructions

Consider a comparison instruction:

\[\text{slt} \quad \$t0, \$t1, \$zero \]

and \$t1 contains the 32-bit number \ 1111 \ 01\ldots\ 01\]

What gets stored in \$t0? The result depends on whether \$t1 is a signed or unsigned number – the compiler/programmer must track this and accordingly use either \text{slt} or \text{sltu}

\[\text{slt} \quad \$t0, \$t1, \$zero \quad \text{stores 1 in \$t0} \]
\[\text{sltu} \quad \$t0, \$t1, \$zero \quad \text{stores 0 in \$t0} \]
Sign Extension

• Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers – for example, when doing an add with an immediate operand

• The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left – known as sign extension

So 2_{10} goes from 0000 0000 0000 0010 to 0000 0000 0000 0000 0000 0000 0000 0010

and -2_{10} goes from 1111 1111 1111 1110 to 1111 1111 1111 1111 1111 1111 1111 1110
The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers:

- **sign-and-magnitude**: the most significant bit represents +/- and the remaining bits express the magnitude.

- **one’s complement**: \(-x\) is represented by inverting all the bits of \(x\).

Both representations above suffer from two zeroes.