Active Learning

Piyush Rai

CS5350/6350: Machine Learning

November 10, 2011
(Passive) Supervised Learning

Some figures from Burr Settles

raw unlabeled data x_1, x_2, x_3, \ldots

supervised learner induces a classifier

doesn't have access to labels

expert/oracle analyzes experiments to determine labels

1 Some figures from Burr Settles
(Passive) Supervised Learning

supervised learner induces a classifier

expert / oracle analyzes experiments to determine labels

raw unlabeled data x_1, x_2, x_3, \ldots

random sample
(Passive) Supervised Learning

raw unlabeled data
\(x_1, x_2, x_3, \ldots \)

random sample

labeled training instances
\(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \langle x_3, y_3 \rangle, \ldots \)

supervised learner
induces a classifier

expert / oracle
analyzes experiments to determine labels
Semi-supervised Learning

- Semi-supervised learner induces a classifier
- Exploit the structure in unlabeled data
- Raw unlabeled data: x_1, x_2, x_3, \ldots
- Random sample
- Labeled training instances: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots$
- Expert/oracle analyzes experiments to determine labels
Active Learning

Raw unlabeled data:
\[x_1, x_2, x_3, \ldots \]

Assumes some small amount of initial labeled training data.

Active learner induces a classifier.

Expert/oracle analyzes experiments to determine labels.
Active Learning

inspect the unlabeled data

raw unlabeled data x_1, x_2, x_3, \ldots

active learner induces a classifier

expert / oracle analyzes experiments to determine labels
Active Learning

inspect the unlabeled data

raw unlabeled data \(x_1, x_2, x_3, \ldots \)

request labels for selected data \(\langle x_1, ? \rangle \)

active learner induces a classifier

expert/oracle analyzes experiments to determine labels
Active Learning

- Inspect the unlabeled data
- Raw unlabeled data \(x_1, x_2, x_3, \ldots\)
- Request labels for selected data \(\langle x_1, ? \rangle\)
- Expert/oracle analyzes experiments to determine labels

Active learner induces a classifier
Active Learning

inspect the unlabeled data

raw unlabeled data
\[x_1, x_2, x_3, \ldots \]

request labels for selected data
\[\langle x_1, ? \rangle \]
\[\langle x_2, ? \rangle \]
\[\langle x_1, y_1 \rangle \]

active learner induces a classifier

expert / oracle analyzes experiments to determine labels
Active Learning

- Inspect the unlabeled data.
- Raw unlabeled data: x_1, x_2, x_3, \ldots
- Request labels for selected data:
 - $\langle x_1, ? \rangle$
 - $\langle x_2, ? \rangle$
 - $\langle x_1, y_1 \rangle$
 - $\langle x_2, y_2 \rangle$

Active learner induces a classifier.

Expert/oracle analyzes experiments to determine labels.
Active Learning vs Random Sampling

- Passive Learning curve: Randomly selects examples to get labels for
- Active Learning curve: Active learning selects examples to get labels for
Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

- Of course, thing could go wrong..
Types of Active Learning

Largely falls into one of these two types:

- **Stream-Based Active Learning**
 - Consider one unlabeled example at a time
 - Decide whether to query its label or ignore it

- **Pool-Based Active Learning**
 - Given: a large unlabeled pool of examples
 - Rank examples in order of informativeness
 - Query the labels for the most informative example(s)
Query Selection Strategies

Any Active Learning algorithm requires a query selection strategy

Some examples:
- Uncertainty Sampling
- Query By Committee (QBC)
- Expected Model Change
- Expected Error Reduction
- Variance Reduction
- Density Weighted Methods
How Active Learning Operates

- Active Learning proceeds in rounds
- Each round has a current model (learned using the labeled data seen so far)
- The current model is used to assess informativeness of unlabeled examples
 - .. using one of the query selection strategies
- The most informative example(s) is/are selected
- The labels are obtained (by the labeling oracle)
- The (now) labeled example(s) is/are included in the training data
- The model is re-trained using the new training data
- The process repeat until we have budget left for getting labels
Uncertainty Sampling

- Select examples which the current model θ is the most uncertain about.

- Various ways to measure uncertainty. For example:
 - Based on the distance from the hyperplane
 - Using the label probability $P_\theta(y|x)$ (for probabilistic models)

- Some typically used measures based on label probabilities:
 - **Least Confident:** $x_{LC}^* = \text{argmax}_x 1 - P_\theta(\hat{y}|x)$
 where \hat{y} is the most probable label for x under the current model θ
 - **Smallest Margin:** $x_{SM}^* = \text{argmin}_x P_\theta(y_1|x) - P_\theta(y_2|x)$
 y_1, y_2 are the two most probable labels for x under the current model
 - **Label Entropy:** choose example whose label entropy is maximum
 $$x_{LE}^* = \text{argmax}_x \sum_i P_\theta(y_i|x) \log P_\theta(y_i|x)$$
 where y_i ranges over all possible labels
Uncertainty Sampling

A simple illustration of uncertainty sampling based on the distance from the hyperplane (i.e., margin based)

400 instances sampled from 2 class Gaussians

random sampling
30 labeled instances (accuracy=0.7)

uncertainty sampling
30 labeled instances (accuracy=0.9)
Uncertainty Sampling based on Label-Propagation

(1) Build neighborhood graph

(2) Query some random points

(3) Propagate labels

(4) Make query and go to (3)
Query By Committee (QBC)

- QBC uses a committee of models \(C = \{ \theta^{(1)}, \ldots, \theta^{(C)} \} \)
- All models trained using the currently available labeled data \(\mathcal{L} \)
- How is the committee constructed? Some possible ways:
 - Sampling different models from the model distribution \(P(\theta|\mathcal{L}) \)
 - Using ensemble methods (bagging/boosting, etc.)
- All models vote their predictions on the unlabeled pool
- The example(s) with maximum disagreement is/are chosen for labeling
- One way of measuring disagreement is the Vote Entropy
 - Vote Entropy
 \[
 x_{VE}^* = \arg\max_x - \sum_i \frac{V(y_i)}{C} \log \frac{V(y_i)}{C}
 \]

 \(y_i \) ranges over all possible labels, \(V(y_i) \): number of votes received to label \(y_i \)
- Each model in the committee is re-trained after including the new example(s)
Effect of Outlier Examples

- Uncertainty Sampling or QBC may wrongly think an outlier to be an informative example.
- Such examples won’t really help (and can even be misleading).

Other robust query selection methods exist to deal with outliers.

Idea: Instead of using the confidence of a model on an example, see how a labeled example affects the model itself (various ways to quantify this).
- The example(s) that affects the model the most is probably the most informative.
Other Query Selection Methods

- **Expected Model Change**
 - Select the example whose inclusion brings about the maximum change in the model (e.g., the gradient of the loss function w.r.t. the parameters)

- **Expected Error Reduction**
 - Select example that reduces the expected generalization error the most
 - .. measured w.r.t. the remaining unlabeled examples (using the expected labels)

- **Variance Reduction**
 - Select example(s) that reduces the model variance by the most
 - .. by maximizing Fisher information of model parameters (e.g., by minimizing the trace or determinant of the inverse Fisher information matrix)
 - Fisher information matrix: computed using the log-likelihood

- **Density Weighting**
 - Weight the informativeness of an example by its average similarity to the entire unlabeled pool of examples
 - An outlier will not get a substantial weight!
A Perceptron Based Active Learner

Based on **Selective Sampling** (looking at one example at a time)

- **Input:** Parameter $b > 0$ (dictates how aggressively we want to query labels)
- **Initialization:** $w = [0 \ 0 \ 0 \ldots 0]$
- **For** $n = 1 : N$
 - Get x_n, compute $p_n = w^\top x_n$
 - Predict $\hat{y}_n = \text{sign}(p_n)$
 - Draw Bernoulli random variable $Z \in \{0, 1\}$ with probability $\frac{b}{b + |p_n|}$
 - If $Z == 1$, query the true label y_n
 - If $y_n \neq \hat{y}_n$ **then** update w, **else** don’t update w
 - Else if $Z == 0$, ignore the example x_n and don’t update w

Comments:

- $|p_n|$ is the **absolute margin** of x_n
- Large $|p_n| \Rightarrow$ Small label query probability
- Expected number of labels queried $= \sum_{n=1}^{N} \mathbb{E}[\frac{b}{b + |p_n|}]$
Concluding Thoughts..

- Active Learning: *Label efficient* learning strategy
- Based on judging the *informativeness* of examples
- Several variants possible. E.g.,
 - Different examples having *different labeling costs*
 - Access to *multiple labeling oracles* (possibly noisy)
 - *Active Learning on features* instead of labels (e.g., if features are expensive)
- Being “actively” used in industry (IBM, Microsoft, Siemens, Google, etc.)
- Some questions worth thinking about (read the Active Learning survey)
 - Can I *reuse* an actively labeled dataset to *train a new different model*?
 - Sampling is *biased*. The actively labeled dataset *doesn’t reflect the true training/test data distribution*. What could be the consequences? How could this be accounted for?