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1. Introduction 

Below we give a list of retrieval operations that 
we perform on a set of N positive integers, each 

i M: 
(i) FIND(K): Determine whether or not the 

key K belongs to the set S, and return a pointer to 
K if it belongs to S. 

(ii) SUCCESSOR(K): Find the least element in 

the set S with key value greater than K. 
(iii) PREDECESSOR(K): Find the greatest mem- 

ber of the set S with key value less than K. 

(iv) SUBSET(K,, K,): Find (and then produce) 
the list of the elements of the set S whose key 
values lie between K, and K,. 

For convenience, we will say that a data struc- 
ture has a worst-case overall-retrieval complexity 
@[f(M)] iff retrieval operations (i) through (iii) 
have a worst-case runtime @[f(M)] and the worst- 
case runtime Of SUBSET queries iS proportional t0 
f(M) plus the size of the retrieved subset. 

Van Emde Boas, Kaas and Zijlstra [IO] have 
presented a data structure, called a stratified tree, 
that has worst-case overall-retrieval complexity 
@(log log M) and uses O(M log log M) memory. 
Their work motivated much of our research effort. 
It indicated the need for more space-efficient data 
structures [8]. Van Emde Boas developed a mod- 

ified tree data structure that uses O(M) space in 
[9]. Also, Knuth [5] offered a very clear summary 
of the paper by Van Emde Boas et al. [lo]. 

Prior to this article, space-efficient modifica- 
tions of stratified trees [lo] were studied by John- 
son [3], who showed how to attain a worst-case 
overall-retrieval complexity 

@ [log log( SUCCESSOR( K) - PREDECESSOR(K))] 

in O(N . M’) space, and by Willard [I 1,121, who 
showed how to attain a time-complexity 

O(dlog M ) in O(N) space. Also, Willard [12] 
proved that all implementations of stratified trees 
use at least expected memory Q(m) when there 
exists an integer i such that N = O(M’~2-‘), and 

that their worst-case space always respects the 
lower bound Q(N’/4M’/4). 

In this article we modify the stratified tree 
[9,10] with the proposal of Fredman et al. [l] to 
prove that a worst-case overall-retrieval complex- 

ity @(log log M) is possible in space O(N). Our 
results are the best known complexities for the 
worst-case in O(N) space, but [2,6,7,16] produced 
a log log N expected time under the uniform dis- 
tribution for even unindexed files, and Willard 
[ 13,141 shows that the latter expected time gener- 
alizes to many nonuniform densities (even in the 
absence of an index or other information specify- 
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ing the probability distribution). 
Our data structure has a good expected inser- 

tion-deletion time, but it does not control the 
worst case of insertions and deletions. Therefore, 
no one of the results mentioned in this section is 
preferable to the others by all measures of com- 
plexity. In particular, the literature on stratified 
tree-like methods [3,9,10,11,12] has established 
several data structures with better insertion-dele- 
tion times than y-fast tries although less efficient 
combinations of retrieval time and space. This 

point leads to several open questions mentioned in 
Section 3, the most important of which is whether 
a worst-case complexity @(log log M) for in- 

sertions, deletions and retrievals simultaneously is 
possible in O(N) space. 

2. Main result 

For simplicity, we assume that M is an integer 
of the form 2h - 1. Our first data structure, the 
x-fast trie, will consist of a binary trie of height h 
where all records are stored at the leaf level (that 
is, at depth h). If v is a node at a height j, then all 
the leaves descending from v will have key values 
between the quantities (i - 1)2J + 1 and i. 2J, for 
some integer i. We will call i the identifier of v, and 
denote it as ID(V). The term COUNT(V) will denote 
the number of elements in the set S which corre- 
spbnd to leaves descending from v. If v is a node 
with no left (respectively right) son, then DESCEN- 
DANT(V) will be a pointer to the leaf with the 
smallest (respectively largest) key descending from 
it. The leaves of an x-fast trie will form a doubly- 
linked list with each leaf pointing to its left and 
right neighbor. To save memory space, a node v is 
stored in the x-fast trie only when COUNT(V) > 0. 
Fig. 1 illustrates an example of the main section of 
an x-fast trie. 

The second part of an x-fast trie, its level-search 
structure (LSS), uses a concept recently introduced 
by Fredman, Komolbs and Szemerkdi [l]. They 
considered a computation model identical to that 
in the literature on stratified trees ‘, and illustrated 

’ The assumption in [l] and in all the other articles we have 
cited is that all arithmetic operations on two nonnegative 

integers < M can be performed in time O(1). 
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Fig. 1. An x-fast trie representing the set (0, I. 3). The quantity 

inside a node is its COUNT-field. The only nodes with well-de- 

fined DESCENDANT fields are the IeaVeS (pointing to themselves) 

and c pointing to f. 

a data structure which uses O(n) space and ex- 
ecutes FIND-queries in worst-case time O(1) for 
any set of n nonnegative integer keys each of 
which is < m. We will use h + 1 copies of this 

search structure. The jrh copy, denoted LOSS, will 
represent the set of trie-nodes of height j with their 
identifiers serving as keys. For instance, LSS(O) in 
Fig. 1 represents the trie’s three leaves with the 
key-values 0, 1, and 3, respectively. 

In our discussion, a node v of height j will be 
called an ancestor of the integer K iff [K/2J] = 
ID(V). The symbol BOTTOM(K) will denote the 
lowest ancestor of v stored in the trie. (We do not 
store nodes when COUNT(V) = 0.) Many aspects of 
our algorithm and data structure will have analogs 
from the work of Van Emde Boas, Kaas and 
Zijlstra [lo]. For instance, they used analogs of 
descendant-pointers and also employed a binary 
search similar to that described in the next para- 
graph for finding BOTTOM(K). However, our 
method uses memory space much more economi- 
cally. The next three lemmas are therefore signifi- 
cant. 

Lemma 1. The x-fast trie makes it possible to find 
the node BOTTOM(K) in worst-case time @(log 

log M). 

Proof. An algorithm which finds this node by 
making a binary search among the h + 1 different 
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LSSS is shown in Fig. 2. Each probe of an LSS uses 

time O(1) by the basic result of [l]. Since our 
binary search makes [log(h + l)] probes and since 
h = log M, the time of this algorithm is clearly 

@(log log M). IJ 

A BINARY SEARCH OF THE TRIE-LEVELS FOR FINDING 
BOTTOM (K) 

Sfepl. SetP=Oandu=h. 
Step 2. Set j = 1 i(l+ u)]. 

Step 3. If searching ~ss(j) indicates that the key K has a 
non-null ancestor at a height j in the trie, then set 
u=j,elsesetI=j+l. 

Step 4. If I* u, then go back to Step 2, else print the 
ancestor found in Step 3, since it is BOTTOM(K). 

Fig. 2. 

Lemma 2. x-fast tries have a worst-case overall- 

retrieval complexity @(log log M) and never occupy 
more memory than O(N . log M). 

Proof. Time-complexity. The first step of a search 
in an x-fast trie will be the @(log log M) algorithm 
for finding BOTTOM(K) in Lemma 1. Let v denote 
the node BOTTOM(K). The DESCENDANT-field of 
this node will be a pointer to K, its successor, or 
its predecessor. Since the leaves of an x-fast trie 
are ordered by key-value with each leaf pointing to 

its predecessor and successor, only constant time is 
needed to find these three elements after 
BOTTOM(K) is located. These three queries there- 
fore run in time @(log log M). Subset queries run 
in time proportional to log log M plus the size of 
the retrieved subset, by similar reasoning. 

Space-complexity. A trie of height log M with N 
leaves can have no more than N. log M nodes. 
The main section of the x-fast trie will therefore 
consume this much space, and its LSSs also use 
space linear in N. log M by the theorem of Fred- 
man, Komolos and Szemeredi [l]. 0 

Van Emde Boas [9] has noted that the memory 
space of stratified trees can be reduced from 
O(M log log M) to O(M) by pruning the bottom 
of the data structure, and similar techniques have 
been used in other contexts [4,11,12]. Now we will 
apply this technique to x-fast tries, and develop a 
modified data structure, called the y-fast trie. which 
has the same retrieval complexity as x-fast tries 

but satisfies a better memory constraint O(N). 
Define an L-separator of the set S, denoted S,, 

as the subset of S including S’s largest element, its 
smallest element, its (L + 1)st smallest element, its 
(2L + 1)st smallest element, etc. Let K, denote the 
i th smallest element in S, and let 

Sy = (k E SJK; < k < K,,,). 

Then a y-fast trie of order L will be defined as a 
two-part data structure whose top half is an x-fast 
trie representing the set S,, whose bottom half is a 
forest of binary trees of height [log L] where the 
i th tree describes the set ST, and which has the i th 

leaf in the top half of this data structure pointing 
to the i th tree. 

Lemma 1 implies that the top half of the y-fast 
trie can certainly be searched in time @(log log M), 

and will occupy no more memory than @((N/L) x 

log M]. Each binary tree in the bottom half will 
have a search-time @(log L), and the full forest of 
binary trees will use space O(N). Therefore, an 
arbitrary y-fast trie of order L will have a worst- 
case overall-retrieval complexity @(log L + 
log log M) and will use O[N . (1 + (log M)/L)] 
space. Lemma 3 follows by applying these ob- 
servations to the case L = log M. 

Lemma 3. y-fast tries make possible a worst-case 
overall-retrieval complexity 0 (log log M) within 

memory space O(N). 

3. Open questions 

Does Lemma 3 represent the best time possible 
for data structures in the space O(N)? Yao and 
Yao 1161 have proven a lower bound log log N for 
unindexed files which may be partially relevant to 

this open question. 
How does the answer to the question above 

change if the environment is dynamic? One prob- 
lem is that y-fast tries do not have a good worst- 
case insertion-deletion time, although it should be 
possible to guarantee expected cost log log N. The 
best current worst-case result in the space O(N) is 
given in [ 11,121, and [3,8] describe alternatives in 
larger memory spaces. Fast tries have unusual 
implications for multi-dimensional retrieval [ 151, 
and many further questions remain there. 
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