
Chapter 44

Efficient Suffix Trees on Secondary Storage

(extended abstract) *

David R. Clark

Abstract

We present a new representation for suffix trees, a data
structure used in full text searching, that uses little more
storage than the lg n bits per index point required to
store the list of index points. We also show algorithms for
maintaining the structure on secondary storage in such a
way that we minimize the number of disk accesses while

searching and we can efficiently handle changes to the text.
Using this new representation, suffix trees are competitive
in terms of space with, and actually offer significantly better
performance than, existing methods for full text searching.
While we present new algorithms and data structures in this
paper, the emphasis is on practical searching methods that
have been empirically verified against real data.

1 Introduction

The electronic storage and retrieval of information
in large documents such as encyclopedias and other
reference works requires the use of searching systems
that are efficient both in time and storage requirements.
In this paper, we present a practical data structure
for full text searching in very large documents (billions
of characters are quite possible). As well, we present
methods for maintaining this structure under updates to
the text. The new structure offers an order of magnitude
improvement in performance over current methods and
is appropriate for use on CD-ROM, a medium for which
many competing structures are not well suited. The new
structure is compact, requiring approximately the same
storage as a suffix array and a fraction of the storage
required by previous suffix tree representations.

In full text searching we want to preprocess a
document so that given a query phrase all occurrences
of the phrase in the original document can be located
very quickly. One effective method to do this is to
create a trie whose entries are the suffixes of the

*Department of Computer Science, University of Waterloo,

Waterloo, ON, NZL-3G1, Canada
E-mail: {drclark,imunro}Ouwaterloo.ca

This research was supported in part by the Natural Sciences

and Engineering Research Council under grant A8237 and by the

Information Technology Research Centre of Ontario.

J. Ian Munro

original text starting at each possible index point (i.e.
starting at each word or character, as appropriate for
the application). If the paths in the trie are truncated
at the point where they represent a unique suffix and
all the internal nodes at which no branching occurs
are removed then we have a version of the sufix bee,

see Weiner [23] or McCreight[lG]. In such a tree, each
leaf contains the offset of the appropriate suffix in the
original document. Gonnet et a1.[7] obtained the Pat
tree’ by storing the binary representation of each suffix
in a variant of Morrison’s PATRICIA structure[l8]. The
main advantage of suffix trees and Pat trees is their
ability to locate a subtree of answers in time strictly
proportional to the length of the query string. Once the
subtree is located by tracing the query phrase down the
trie, a single access to an arbitrary suffix in the subtree
is required to determine if the entire subtree contains
matches to the query or if there are no matches in the
document.

Both Gonnet et a1.[7] and Manber and Myer8[15]
report that, with careful implementation, suffix trees
and Pat trees require approximately 17 bytes per index
point when searching documents of up to 232 characters.
In practice, a 1 megabyte file will require 3 megabytes to
store a word index (assuming typical English language
text) and 17 megabytes for a character index. As a
consequence, both groups propose dropping the trie
structure altogether and simply perform a binary search
on the array of references to the text. Searches on such
a suffix array structure take time logarithmic in the text
size but require approximately lg n random accesses into
each of the suffix array and the text, where n is the size
of the document being searched. Both groups report
methods for obtaining some reduction in the number of
random accesses by augmenting the structure, but, in
general, at least lg n accesses are still required. These
methods increase the size of the suffix array by about
25%. The 2 lg n access cost for searching a document
is quite acceptable provided the document is stored in
primary storage. When using slower secondary storage,

‘Not to be confused with the PATTM system.

383

http://crossmark.crossref.org/dialog/?doi=10.5555%2F313852.314087&domain=pdf&date_stamp=1996-01-28

384 CLARK AND MUNRO

such as magnetic or optical disk, it can be excessively
large. The primary contribution of this paper is a
representation for the Pat tree whose size is comparable
to that of a suffix array. Furthermore, the data is
organized to dramatically reduce the number of disk
accesses: from 40 or 50 to 3 or 4 using reasonably sized
pages on our large test document!

1 Offset 1 Suffix 1 Unique Prefix 1

While Merrett and Shang[17][21] also attack this
problem, our use of a more efficient encoding and
optimal partitioning rules leads to a much more efficient
set of structures. In particular, on a set of real world test
documents containing 100 million index points each,
Merrett and Shang report an average number of accesses
between 5.2 and 7.1 with the maximum number of
accesses varying between 11.0 and.46.0. For comparison,
the structure reported here required at most 4 accesses
on a slightly larger document when using the same
page size. In addition the new structure is much less
processor intensive and so can make effective use of
larger page sizes to search the same document in 2
disk accesses (only appropriate for use on CD-ROM).
Recently, Ferragina and Grossi developed the SB-Tree[5]
and an efficient implementation of it[6] requiring about
12.3 bytes per index point with performance tradeoffs
allowing reductions to 6.3 or fewer bytes per index point.
While the worst case performance of our structure is
significantly poorer (linear vs. logarithmic) than that of
the SB-Tree, the worst case data is sufficiently unlikely
that we expect it to perform better on real world data.
However, the guaranteed worst case behaviour of the
SB-Tree will be attractive in some applications. Due
to issues of page fill ratios and time-space tradeoffs in
the implementation of both structures, it is not clear
which will be more compact in practice. Compact tries
were also investigated by Darragh, Cleary and Witten[2]
but their structure is not directly comparable due to its
probabilistic nature. The updating of suffix trees and
special structures for dynamic text have been considered
by other authors[9][16][4] but these works only deal
with the primary storage case. Finally, Barbosa et al.
considered the physical attributes of magnetic disk to
optimize the time taken to perform the 21gn accesses
required by suffix arrays[l]. A survey of other text
searching methods can be found in Faloutsos[3].

Table 1: Suffixes of abccabcat

Figure 1: Pat tree, [n] indicates the bit to test

character “$,” not in E:, is appended to S. Given the
string S=abccabca$, the suffixes of S are shown in Table
1. Each suffix has a minimal prefix that distinguishes
it from the other suffixes. This unique identifier is very
important to suffix based search methods and appears
in the third column of Table 1. A suffix tree is a trie on
the unique suffix identifiers that has had all degree one
nodes removed to save space.

1.1 Suffix Trees and Related Structures Given a
text string S = srszsa... s,, where each si is a member of
an alphabet E:, we want to preprocess S such that given a
pattern P = prpsps...pm,(pi E C), the set {i : Si+.si+m-l
= P} can be found as efficiently as possible. Suffix
based search methods operate by searching the set of
suffixes of the string S. In order to ensure that each suffix
corresponds to a unique position in the text, a special

The suffix tree structure considered here is the Pat
tree of Gonnet et a1.[7]. Pat trees are a form of Digital
Tree Search[lZ] resulting from a merging of suffix trees
and the Patricia search method of Morrison[l8]. Given
a binary encoding of C U { $}, the Pat tree is obtained by
encoding the suffixes of S as bit strings and storing them
in a Patricia tree for searching. Each internal node in
a Pat tree is labelled with the first bit offset at which
the suffixes in the sub-tree differ and has two children
containing all the suffixes having a 0 at the differing bit
in one subtree and those having a 1 in the other. By
adopting the convention of 0 for the left child and 1 for
the right, we can encode the suffix tree as a binary tree
with each internal node labeled by the offset of the bit
used to distinguish the suffixes under each node. Like a
suffix tree, the leaves of the Pat tree contain the offsets
of the appropriate suffixes. Using the encoding a=OO,
b=Ol, c=lO and $=ll, the Pat tree for the example
string is given in Figure 1.

A Pat tree is searched by generating the binary
encoding of the pattern and then traversing the tree. At

EFFICIENT SUFFIX TREES 385

each internal node, the bit offset is used to select a bit
from the pattern. Based on the bit value, the traversal
continues with either the left or the right child of the
node. Because the search can skip bits in the pattern,
the termination of the search is more complex than that
of simple suffix trees. If the search terminates at a leaf
node, then the pattern must be compared to the leaf
suffix to see if it matches. If the end of the pattern is
encountered before a leaf, then a representative suffix
from the current subtree must be chosen and compared
to the pattern. The representative matches the pattern
if and only if all of the suffixes in the subtree match the
pattern. In practice, the offset information stored in
each node is a skip value one less than the difference
between the offset value of the node and its parent
(with an implicit parent offset of 0 for the root). The
actual offset is accumulated as the tree is traversed.
Provided care is taken to ensure that locating a sample
for comparison can be performed efficiently, the search
cost of Pat trees is the same as that of suffix trees, O(m)
where m is the size of the pattern.

1.2 Storage Requirements Computer representa-
tions of suffix based structures require the use of point-
ers and text offsets. For the purposes of comparison,
it is useful and reasonable to assume that each of these
require lg n bits. Manber and Myers performed an anal-
ysis of various possible representations of suffix trees
and determined that approximately 17 bytes per index
point were used in the most compact representations
[15]. Under the assumption that their system was ca-
pable of handling documents of at most 232 characters,
17 bytes equates to 4.25 lgn for the texts considered
in their report. This result agrees with the “n to 5n
words” reported by Gonnet et a1.[7]. The use of Pat
trees can reduce the storage requirements to 3 lg n bits
if the obvious implementation of a node as two pointers
and an integer skip is used. On our large test docu-
ment (about 2 2g characters), this results in a word index
roughly twice the size of the text - a suffix tree would
be three times the size. If all the characters in a docu-
ment are indexed, the size each of these indices will be
increased by a factor of approximately five.

2 Compact Pat Trees

The information stored in the Pat tree can be broken
into three categories

l the tree structure,

l the skip values,

l the suffix offsets in the leaves.
By efficiently storing each class of information, our
approach, Compact Pat Trees (CPTs), matches the

storage efficiency of other suffix based search structures
while retaining the functionality of Pat trees.

2.1 Static Text on Primary Storage In this sec-
tion we use a compact tree encoding to represent the
tree portion of the Pat tree and obtain an efficient data
structure for searching static text in primary storage.
This structure is the basis of later structures for search-
ing on secondary storage. In order to implement the Pat
tree search operations, the encoding of the tree struc-
ture must provide the following functionality:

l efficient selection of the left and right children of a
node,

l support for the inclusion of constant size “fields” for
each internal node, the skip, and another constant
size field for each leaf, the suffix offsets. Given
a node or leaf, we need to be able to efficiently
determine the field values.

l given a nod e, efficiently retrieve the suffix offset
field information from some leaf descended from the
node.

In each case, we require that the operations be per-
formed in a constant number of operations on lgn
bit size objects. Finally, we want an encoding that
is as compact as we can find. Given that there are

binary trees on n nodes, a compact

encoding of the tree structure for a Pat tree should re-
quire about lgC,-1 bits. Using Stirling’s approxima-
tion to the logarithm of the factorial function, lg C, can
be shown to be approximately 2n. The survey papers
of MZkinen[l4] and Katajainen and M&kinen[1 l] present
many techniques for binary presentations of binary trees
that attain the 2n bound, however none meet the crite-
ria above. For this application, we use a slightly larger
encoding developed by Jacobson[lO] because it allows
direct implementation of tree traversals on the encoded
form of the tree. Most other representations require
at least linear time to implement tree traversals[l4].
While Jacobson also presents a 2n+o(n) representation,
we chose the encoding below because it allows a more
straightforward implementation of the Pat tree and in-
cludes the size of each subtree.

Jacobson’s encoding represents each tree as a bit
string of the form

1 Header 1 Left Tree Encoding 1 Right Tree Encoding 1
where the header contains two fields:

l a single bit indicating which of the two children is
smaller with an arbitrary choice made in the case
of a tie, and,

386 CLARK AND MUNRO

1011,101011,11,??

lO16i-Yl
I(--5 L--
--

Figure 2: Tree with Encoding

l a prefix coded integer indicating the size of the
smaller child. Jacobson forms his prefix code for
an integer i by writing the binary representation of
i interleaved with a unary encoding of lg i. We use
a similar code obtained by concatenating the unary
encoding of lg i+ 1 with the binary encoding of i+ 1
because it saves one bit per node. The size of the
encoding is 2 [lg(i + 2)j - 1. More sophisticated
encodings are possible but lead to only slightly
smaller total sizes[lO].
The critical point is that the encoding is padded so

that the size of the encoding is independent of shape of
the tree. This feature allows efficient implementation of
the traversal operations.

The size of the encoding is B(n) = 3n -
2 [lg(n + l)] - 2vz(n + 1) + 2 - [n is odd] where 212 ,
which is defined in[8], is the number of ones in a num-
bers binary representation. From this equation, it is
clear that B(n) < 3n so the total storage requirement
for the binary tree information is less than three bits
per node. Using this representation, the tree structure
in the Pat tree example is represented by the bit string
101110101111-, where the actual value of the last two
bits is unimportant. The tree in Figure 2 shows this
tree with each subtree labeled with its description.

The simple formula for B(n) allows efficient imple-
mentation of the operations of fetching the left and right
children of a node. The left child is found immediately
following the prefix code of the integer giving the size of
the smaller tree and the right child can be found imme-
diately after the description of the left child whose size
can be computed based on the number of nodes in the
left subtree. This size can in turn be computed from
the values of “smaller, ” “size of smaller,” and the size
of the overall tree. Because the tree traversal operation
above returns, and requires, both the offset of the child’s
encoding and its size, we can also track the number of
leaves to the left of the leftmost leaf in the current sub-
tree. This is achieved by starting an index at zero and
increasing it by the size of the left subtree plus one each
time the right child is taken. Keeping this index allows
us to store the suffix offsets in an array sorted lexico-
graphically, a suffix array, and to determine the exact
sub-array that contains the response to the query.

2.2 Storing the Skip Compressing the skip infor-
mation requires an understanding of the distribution of
the skip values. For the purposes of analysing the skips,
temporarily assume the suffixes are strings of indepen-
dent uniformly sampled bits with 0 and 1 having equal
probability. Consider an internal node with Ic leaves in
its subtree, then the probability that the skip value of
the node is greater than j is the same as the probability
that k random bit strings match in their first j+ 1 bits.
This value is easily seen to be 2-(j+1)(k-1). From this
formula, we see that the majority of the skip values are
zero and that the likelihood of higher values decreases
geometrically. We have verified this behaviour on real
world documents. Shang also noted the rapid decline in
the number of large skip values[21].

The low likelihood of large skip values leads to a
simple method of compactly encoding the skip values.
We reserve a small fixed number of bits to hold the skip
value for each internal node and introduce a strategy to
resolve problems caused by skip values that overflow
this field. We handle overflows by inserting a new
node (and a leaf) into the tree and distributing the
skip bits from the original node across the skip fields
of the new and the original node. The dummy leaf
node must have some special key value that allows
it to be easily recognized (typically all OS or all 1s).
Multiple overflow nodes and leaves can be inserted for
extremely large skip values. When traversing the tree,
simply checking for a single leaf with the dummy value
is sufficient to determine if the skip should be checked
or the bits concatenated to obtain the true skip value.
The use of this overflow handling mechanism has one
slight drawback in that the subtree size is no longer the
exact size of the answer. However, the subtree size is
still a good estimate of the size and also an upper bound
on the size of the answer.

There are two approximations in the argument
above that deserve serious consideration. The first is
the assumption that the bit strings in the suffixes are
independent. Clearly, being possibly overlapping sub-
strings of a single string, this is not the case. However,
this approximation does not seem inappropriate because
of the, assumed large, size of the underlying string.
The more serious problem above is the assumption that
the binary string is generated by a uniform symmetric
random process. This is not a good model of written
text or other large documents. For example, English
text coded in ASCII will have the high order bit of
each byte set to zero and is unlikely to contain the
codes 0..31. In order to resolve this weakness in our
arguments (and the structures based on it), we convert
all input strings to an approximation to a uniform
symmetric binary string by running them through a

EFFICIENT SUFFIX TREES 381

data compression algorithm. Our current search engine
uses fixed size codes and a simple uniform model of
the text. While this model is the same as using a
compact encoding for the character set, so far it has
proven adequate. We are considering the use of a model
including digrams for a future version of the search
engine. The data structure will continue to operate
without this encoding step but the loss of one or more
bits per index point in storage efficiency should be
expected.

1 Name 1 #Characters I SitWords 1
I , . . , ., 1

] Holmes] 238551 I 43745 I
Bible 5553621 1202504
OED 545578702 108687644 ,

Table 2: Sample Documents

Text Skip Field #Overflow Index Size
Size Nodes (bytes)

THEOREM 2.1. Under the assumptions above, the
expected size of the Compact Pat Tree can be made less

than 3.5 + lg n + lg lg n + 0 (v) bits per node. We

achieve this by setting the skip field size to lg lg lg n.

Proof. Under the assumptions and using the skip
field size above,
-+ n

2(k k nP+1 + (124% is a significant over-
%%nate of the num er of overflow nodes obtained by % +-*-
assuming each internal node has exactly two suffixes
below it. The total storage is then less than lgn +

(3+lgn+lglglgn) (n- l+ & + 2(lgl~m)2+1 + . ..)-
Multiplying through and dividing by n, we obtain the
desired result.

Table 3: Index Sizes for Sample Documents

l Bible, an SGML[20] encoded version of the King
James Bible,

l

In real text searching applications, the index is
slightly larger because a larger skip field size is more
effective. We typically use a skip field size of 5 or 6
depending on the document size. Even these larger sizes
result in a very small index requiring about 10 bits per
index point to represent the trie. For storing the skip
values, we simply add a third constant size field to the
tree header and modify B(n) appropriately by adding
n times the size of the skip field.

The

OED, an SGML encoded version of the Oxford
English Dictionary[lS].
search engine performs case conversion and the

2.3 Suffix Offsets The suffix offsets take up the bulk
of the storage used by the CPT and other suffix based
structures. While the suffix offsets do not easily admit
compression, they can be stored more compactly if we
are willing to make some sacrifices on performance.
To do this, we use a technique also used by Shang’s
PaTries[21]. If k 1 ow order bits in the suffix offsets are
omitted from the CPT structure, nk bits are saved in
the final index. This change incurs a 2k cost in the
searching time and a 2” multiplicative factor on the
conversion of a node to its list of leaf offsets because each
offset value will require a search through 2k characters
to locate the exact occurrence of the pattern.

mapping of special characters to blanks prior to index-
ing and searching. Various properties of these docu-
ments are shown in Table 2. Table 3 shows the number
of overflow nodes and the resulting index sizes for two
of the sample documents (the OED is too large for con-
struction of an index in primary storage). From this ta-
ble we see that the optimal skip sizes are 5 for Holmes
and 6 for the Bible. In addition, the size of the final
index for non-optimal values is still close to the optimal
size.

2.4 Empirical Results For presenting empirical re-
sults on text searching structures, we will use three doc-
uments as test cases:

l Holmes, an ASCII encoded extract from the works
of Sir Arthur Conan Doyle,

3 Static Text on Secondary Storage

Searching methods for large text databases must be con-
cerned with more than asymptotic time requirements;
storage costs and the exact number of secondary stor-
age access are also critical. If the index requires k bytes
per character in the text, the index size will be k times
the size of the document. For large documents the stor-
age cost quickly becomes prohibitive as k gets large.
Similarly, while the asymptotic operation count of the
algorithm is important, the number of accesses to sec-
ondary storage is likely to have a far greater effect on
the performance, and even the feasibility, of the index.
The first half of the paper dealt with controlling the
storage requirements of Pat trees. In the second half of
the paper we concentrate on controlling the number of
accesses to secondary storage during searching.

388

3.1 Partitioned Compact Pat Trees To control
the accesses to secondary storage during searching we
use the method suggested by Gonnet et a1.[7]: decom-
posing the tree into disk block sized pieces (each called a
partition). Each partition of the tree is stored using the
CPT structure from the previous sections. The only
change required to the CPT structure for storing the
partitions is that the offset pointers in a block may now
point to either a suffix in the text or a subtree (partition)
so an extra bit is required to distinguish these two cases.
We use a greedy bottom up partitioning algorithm and
show that such a partitioning minimizes the maximum
number of blocks accessed when traveling from the root
to any leaf. The algorithm for building the index on
secondary storage will be described in the full version
of the paper.

The partitioning algorithm starts by assigning each
leaf its own partition and a page depth of 1. Working
upward, we apply the rules below at each node. A
simple induction proof shows that the rules above
produce a min-max optimal partitioning of the tree such
that no other optimal partitioning has a smaller root
block. The proof of optimality parallels the partitioning
rules.

If both children have the same page depth
(1) if both children’s partitions and the

current node will fit in a block,
merge the partitions of the children

and add the current node
set the page depth of the current

node to that of the children

(2) else
close off the partitions of the

children
create a new partition for the

current node
set the page depth of the current

node to one more than that of
the children

else
close off the partition of the child

with the lesser depth
(3) if the current node plus the partition

of the larger child will fit on
a block

add the current node to the child’s
part it ion

set the page depth of the current
node to match the child

(4) else
close off the partition of the

remaining child

CLARKANDMUNRO

create a new partition for the
current node

set the page depth of the current
node to one more than that of
the child

While the partitioning rules minimize the maximum
number of secondary storage accesses, they can produce
many small pages and poor fill ratios. There are several
possible methods to alleviate this problem, including:

1.

2.

3.

4.

when a page is closed off, scan its children from
smallest to largest to determine if they can be
merged with the parent,

modify the rules to ensure a certain minimum fill
ratio (e.g. all pages have to be l/4 or l/5 full),

pack multiple logical pages in each physical page,

ignore physical page boundaries when placing logi-
cal pages on disk.

Change one should be a part of any implementation
of these rules. Change two will result in non-optimal
partitioning in some cases but should be worthwhile in a
practical system. The third technique should drastically
minimize the storage requirements in practice but has a
low guaranteed storage utilization and introduces some
complications in the management of secondary storage.
The last technique minimizes the storage requirements
at a small cost for the potential transfer of an extra page
of data on each access. In our current implementation
for static text we use the first and fourth techniques.

We can bound the maximum number of pages
traversed on any root leaf path in terms of the number
of nodes in the Pat tree and the depth of the Pat tree.

THEOREM 3.1. The page depth is less than 1 +

kkJlr 1 +- 2log, n where H is the height of the Pat tree.

Szpankowski shows that under very reasonable condi-
tions on the text, H is logarithmic in n with probability
one[22]. Linking these two results we obtain an expected
performance bound logarithmic in n.

3.2 Empirical Results When producing the empiri-
cal results for indices on secondary storage, the optimal
skip field sizes from the primary storage case were used
for Holmes and the Bible (see Table 3). For the OED,
a skip field size of six was used based on the experience
with the Bible.

In each case, the depth of the tree is equal to
the number of accesses to secondary storage needed to
perform a search if the root block is held in memory. In
the static case, we do not enforce page alignment so an
access will consist of a seek followed by the transfer of at
most two pages worth of data. The results above are for
full suffix pointers. Truncating the suffix offsets would

EFFICIENT SUFFIX TREES 389

Text 1 Page Size 1 Depth 1 #Pages 1 Index Size]

I 1 1OOK I2 1 18409 (577617776 1

Table 4: Results for Static Text on Secondary Storage

significantly reduce the size of the indices at a cost in
computation time but without significantly increasing
the number of disk seeks. For each seek, a small amount
more data would be read. The bottom result in Table 4
is only of interest for indices on CD-ROM where the very
high seek time makes the reading of large quantities of
data worthwhile. The transfer time for the 1OOK page
size is still significantly less than the expected seek time
for this device. We note that in this case of a CD-ROM
sized text and a similarly sized index we can perform
searching using two accesses to the disk. While we do
not cover the index building algorithm here, we will
state that the indices on the OED were built in 5 to
6 hours on a fast machine using 32 Mb of memory. In
our experience, this is competitive with other indexing
algorithms.

4 Dynamic Text on Secondary Storage

The general approach to updating the static representa-
tion from the previous section is to search each suffix of
the modified document in the CPT tree and then make
appropriate changes to the structure based on the path
searched. While updating the tree, it may become nec-
essary to re-partition the tree in order to retain optimal-
ity. Because the partitioning algorithm used is based on
information local to a subtree, the effects of repartition-
ing are limited to the root-change point path. In fact, we
do not have to consider all nodes on that path but can
limit ourselves to those nodes at the partition bound-
aries. This differs considerably from other partitioning
strategies, for example the method of Lukes[l3], where
a local change to a tree can have global side-effects on
the partition.

The updating of the CPT is best discussed in terms
of the insertion or deletion of suffixes because other up-

date models use suffix operations in their implemen-
tation. While constant (amortized) time solutions to
the s&ix insertion and deletion problem do exist (see
McCreight[lG]), they require the maintenance of extra
data in each node. The solutions used here require time
proportional to the tree depth but operate on the com-
pact form of the tree.

To insert a new suffix into a CPT, the following
steps are taken:

1. search the tree using the new suffix until we reach
a leaf

2. determine the first bit position at which the new
suffix and the suffix located at the leaf from step 1
differ

3. find the block containing the edge on the root-leaf
path that skips over the bit position above

4. split the edge by inserting a new node having as
children the new suffix and the old subtree reached
by the edge

5. set the skip numbers of the new node and the old
subtree appropriately

Deletion of a suffix is also easily handled:
1.

2.

3.

locate the suffix’s leaf in the CPT and fetch the
block

remove the suffix and its parent by replacing the
parent with a straight through edge

update the skip value in the suffix’s ex-sibling
After these operations, we may have to adjust the
partitioning so that it still matches the rules given
earlier.

In order to update the CPT so that it reflects
a change in the underlying character string, multiple
tree operations may be required. For example, when
changing the third character of the example string
abccabcd from a c to a b, we must delete the suffixes cc,
bee and abcc and replace them with bcab, bb, and abb.
The distance we must scan backward is bounded by the
maximum offset in the tree which is in turn expected
to be logarithmic in the text size[22]. A second, real
world, model of updates allows the insertion, deletion
and replacement of entire sub-documents in a database.
Under this model of updates, the number of suffix
operations is the same as the number of words in the
documents being manipulated. We use the latter model
in our tests. This model is equivalent to the External
Dynamic Substring Search(EDSS) problem studied by
Ferragina and Grossi[4]. An update to a block can cause
two situations that require corrective action:

l on insert, a block may become too large,

390

Text Depth #Pages Fill Disk Writes
Ratio per word

Holmes 2 197 43% 1.01
Bible 3 6914 38% 1.02

Table 5: Update Costs for Dynamic Text

l on delete, a block may become small enough to
hold its root’s parent and its sibling’s block when
the sibling has the same page depth

In each case, we re-apply the partitioning algorithm to
a subset of the nodes on the root-change point path.
Consider the case of a simple insertion without any
overflow nodes (it is conceivable but unlikely that each
overflow node could cause the consideration of new
nodes). After locating the block containing the insertion
point we need only check if the partition will still fit in
a block after the node is inserted. If it does, we write
the data back and the insertion is done. If not, the
root is moved into either a new partition or its parent’s
partition, depending on the page depth of the parent
block, and the process continues recursively. In such
a case, the sibling will also have to be moved into its
own partition if it is not already in one. Empirically, we
observe that we expect only slightly more than one page
write per node insertion. This behaviour likely results
from the low page fill ratios and we expect a slight
increase in the number of writes/word when we apply
the modified partitioning rules or packing methods to
this case.’ The case for deletion is very similar. Because
the partitioning produced is dependent only on the
current Pat tree, and hence the text, the quality of the
partitioning does not degrade over time and periodic
re-indexing is not necessary.

In order to test the CPT under the second model
of updates, the two smaller test documents were broken
down into sub-documents. We then tested the deletion

and subsequent insertion of complete sub-documents.
The number of blocks written for each word in the newly
inserted document are shown in Figure 5. We have
not as yet made any attempt to address the low fill
ratios in the dynamic case. Several strategies including
the alternate partitioning rules and some limited bin
packing could be applied to this problem. The results
above should be treated as preliminary because we are
still investigating the dynamic CPT case.

5 Conclusions

In this paper we show several representations for Pat
trees that use significantly less storage than previous
methods. In particular, we present:

1.

2.

3.

CLARKANDMUNRO

a new representation for static Pat trees in primary
storage that allows efficient searching with an ex-
pect storage cost of only 3.5 + Ig n + Iglglgn bits
per node for random documents. We also demon-
strate the structure’s practicality on realistic test
documents.

a new representation for static Pat trees in sec-
ondary storage that is little larger than a suffix ar-
ray and offers significantly better performance than
that offered by suffix arrays.

methods for managing the structure mentioned in
point 2 that allow us to efficiently handle updates
to documents on secondary storage.
In addition to its uses in string processing, we be-

lieve the CPT structure for searching static text in pri-
mary storage will find uses in computational biochem-
istry where it will allow fast searching of even longer
strings of genetic information. The structures presented
here for searching on secondary storage are extremely
practical solutions to the efficient phrase searching of
large dynamic documents. It is yet to be seen if their
added functionality is sufficient to make them a rival of
inverted word lists in the large text database field. The
new structures are clearly more suitable for many ap-
plications because of their ability to handle phrase and
regular expression searching. While the CPT is more
compact than traditional representations of suffix trees,
it is still larger than an inverted word list which typi-
cally requires about 60-70% of the text size (as an ex-
periment in data compression, Witten, Bell and Nevill
reduced this to 30% of the text size[24]). Depending on
the structure used to store the inverted word lists, the
CPT structures may offer faster performance in addition
to their more flexible searching.

5.1 Acknowledgments The authors thank the ref-
erees for pointers to some useful references and P. Fer-
ragina and R. Grossi for supplying a preliminary version
of their paper [6].

References

PI

PI

[31

141

E.F. Barbosa, G. Navarro, R. Baeza-Yates, C. Per-
leberg, and N. Ziviani. Optimized binary search and
text retrieval. In Algorithms - ESA ‘95, Third Annual
European Symposium, pages 311-326, September 1995.

J. J. Darragh, J. G. Cleary, and I. H. Witten. Bonsai:
A compact representation of trees. Software - Pructice
and Experience, 23(3):277-291, March 1993.

C. Faloutsos. Access methods for text. Computing
Surveys, 17(1):49-74, March 1985.
P. Ferragina and R. Grossi. Fast incremental text edit-
ing. ACM-SIAM Symposium on Dicrete Algorithms,
pages 531-540, 1995.

EFFICIENT SUFFIX TREES 391

[5] P. Ferragina and R. Grossi. A fully-dynamic data Proc. 14th IEEE Symposium Switching Theory and
structure for external substring search. ACM Sym- Automata Theory, pages 1-11, October 1973.
posium on the Theory of Computing, pages 693-701, [24] I. H. Witten, T. C. Bell, and C. G. Nevill. ModeIes
1995. for compression in full-text retrieval systems. In Data

[6] P. Ferragina and R. Grossi. Fast string searching on Compression Conference, pages 23-32, April 1991.
secondary storage: Theoretical developments and ex-
perimental results. ACM-SIAM Symposium on Dicrete
Algorithms, 1996.

[7] G. Gonnet, R. A. Baeza-Yates, and T. Snider. Lexico-
graphic indices for text: Inverted files vs. pat trees.
Technical Report OED-91-01, Centre for the New
OED., University of Waterloo, 1991.

[S] R.L. Graham, D.E. Knuth, and 0. Patashnik. Con-
crete Mathematics. Addison-Wesley, New York, 1989.

[9] M. Gu, M. Farach, and R. Beigel. An efficient
algorithm for dynamic text indexing. In Proc. of
the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 697-704, January 1994.

[lo] G. Jacobson. Succinct static data structures. Techni-
cal Report CMU-CS-89-112, Carnegie Mellon Univer-
sity, 1989.

[ll] J. Katajainen and E. Makinen. Tree compression and
optimization with applications. Int. Journal Comput.
Science, 1(4):425-447, December 1990.

[12] D. Knuth. The Art of Computer Programming: Sort-
ing and Searching, Volume 3. Addison-Wesley, Read-
ing Mass., 1973.

[13] J.A. Lukes. Efficient algorithm for partitioning of trees.
IBM Journal of Research and Development, 18(3):217-
224, 1974.

1141 E. Makinen. A survey on binary tree codings. The
Computer Journal, 34(5):438-443, 1991.

[15] U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal on
Computing, 22(5):935-948, October 1993.

[16] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the Association for
Computing Machinery, 23(2):262-272, April 1976.

[17] T.H. Merrett and H. Shang. Trie methods for rep-
resenting text. Technical Report SOCS-93.5, McGill
University, 1993.

[18] D. R. Morrison. Patricia - practical algorithm to
retrieve information coded in alphanumeric. Journal of
the Association for Computing Machinery, 15(4):514-
524, October 1968.

[19] The Oxjord English Dictionary, Second Edition.
Clarendon Press, Oxford, 1989.

[20] (IS0 8879) Information Processing - Text and Of-
fice Systems - Standard Generalized Markup Language
(SGML). International Organization for Standardiza-
tion (ISO), 1986.

[21] H. Shang. Trie Methods for Text and SpatiaI Data
Structures on Secondary Storage. PhD thesis, McGill
University, 1995.

[22] W. Szpankowski. Suffix trees revisited (un)expected
asymptotic behavior. Technical Report CSD-TR-Sl-
063, Purdue University, 1991.

[23] P. Weiner. Linear pattern matching algorithm. In

