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Efficient Suffix Trees on Secondary Storage 
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David R. Clark 

Abstract 

We present a new representation for suffix trees, a data 
structure used in full text searching, that uses little more 
storage than the lg n bits per index point required to 
store the list of index points. We also show algorithms for 
maintaining the structure on secondary storage in such a 
way that we minimize the number of disk accesses while 

searching and we can efficiently handle changes to the text. 
Using this new representation, suffix trees are competitive 
in terms of space with, and actually offer significantly better 
performance than, existing methods for full text searching. 
While we present new algorithms and data structures in this 
paper, the emphasis is on practical searching methods that 
have been empirically verified against real data. 

1 Introduction 

The electronic storage and retrieval of information 
in large documents such as encyclopedias and other 
reference works requires the use of searching systems 
that are efficient both in time and storage requirements. 
In this paper, we present a practical data structure 
for full text searching in very large documents (billions 
of characters are quite possible). As well, we present 
methods for maintaining this structure under updates to 
the text. The new structure offers an order of magnitude 
improvement in performance over current methods and 
is appropriate for use on CD-ROM, a medium for which 
many competing structures are not well suited. The new 
structure is compact, requiring approximately the same 
storage as a suffix array and a fraction of the storage 
required by previous suffix tree representations. 

In full text searching we want to preprocess a 
document so that given a query phrase all occurrences 
of the phrase in the original document can be located 
very quickly. One effective method to do this is to 
create a trie whose entries are the suffixes of the 
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original text starting at each possible index point (i.e. 
starting at each word or character, as appropriate for 
the application). If the paths in the trie are truncated 
at the point where they represent a unique suffix and 
all the internal nodes at which no branching occurs 
are removed then we have a version of the sufix bee, 

see Weiner [23] or McCreight[lG]. In such a tree, each 
leaf contains the offset of the appropriate suffix in the 
original document. Gonnet et a1.[7] obtained the Pat 
tree’ by storing the binary representation of each suffix 
in a variant of Morrison’s PATRICIA structure[l8]. The 
main advantage of suffix trees and Pat trees is their 
ability to locate a subtree of answers in time strictly 
proportional to the length of the query string. Once the 
subtree is located by tracing the query phrase down the 
trie, a single access to an arbitrary suffix in the subtree 
is required to determine if the entire subtree contains 
matches to the query or if there are no matches in the 
document. 

Both Gonnet et a1.[7] and Manber and Myer8[15] 
report that, with careful implementation, suffix trees 
and Pat trees require approximately 17 bytes per index 
point when searching documents of up to 232 characters. 
In practice, a 1 megabyte file will require 3 megabytes to 
store a word index (assuming typical English language 
text) and 17 megabytes for a character index. As a 
consequence, both groups propose dropping the trie 
structure altogether and simply perform a binary search 
on the array of references to the text. Searches on such 
a suffix array structure take time logarithmic in the text 
size but require approximately lg n random accesses into 
each of the suffix array and the text, where n is the size 
of the document being searched. Both groups report 
methods for obtaining some reduction in the number of 
random accesses by augmenting the structure, but, in 
general, at least lg n accesses are still required. These 
methods increase the size of the suffix array by about 
25%. The 2 lg n access cost for searching a document 
is quite acceptable provided the document is stored in 
primary storage. When using slower secondary storage, 

‘Not to be confused with the PATTM system. 

383 

http://crossmark.crossref.org/dialog/?doi=10.5555%2F313852.314087&domain=pdf&date_stamp=1996-01-28


384 CLARK AND MUNRO 

such as magnetic or optical disk, it can be excessively 
large. The primary contribution of this paper is a 
representation for the Pat tree whose size is comparable 
to that of a suffix array. Furthermore, the data is 
organized to dramatically reduce the number of disk 
accesses: from 40 or 50 to 3 or 4 using reasonably sized 
pages on our large test document! 

1 Offset 1 Suffix 1 Unique Prefix 1 

While Merrett and Shang[17][21] also attack this 
problem, our use of a more efficient encoding and 
optimal partitioning rules leads to a much more efficient 
set of structures. In particular, on a set of real world test 
documents containing 100 million index points each, 
Merrett and Shang report an average number of accesses 
between 5.2 and 7.1 with the maximum number of 
accesses varying between 11.0 and.46.0. For comparison, 
the structure reported here required at most 4 accesses 
on a slightly larger document when using the same 
page size. In addition the new structure is much less 
processor intensive and so can make effective use of 
larger page sizes to search the same document in 2 
disk accesses (only appropriate for use on CD-ROM). 
Recently, Ferragina and Grossi developed the SB-Tree[5] 
and an efficient implementation of it[6] requiring about 
12.3 bytes per index point with performance tradeoffs 
allowing reductions to 6.3 or fewer bytes per index point. 
While the worst case performance of our structure is 
significantly poorer (linear vs. logarithmic) than that of 
the SB-Tree, the worst case data is sufficiently unlikely 
that we expect it to perform better on real world data. 
However, the guaranteed worst case behaviour of the 
SB-Tree will be attractive in some applications. Due 
to issues of page fill ratios and time-space tradeoffs in 
the implementation of both structures, it is not clear 
which will be more compact in practice. Compact tries 
were also investigated by Darragh, Cleary and Witten[2] 
but their structure is not directly comparable due to its 
probabilistic nature. The updating of suffix trees and 
special structures for dynamic text have been considered 
by other authors[9][16][4] but these works only deal 
with the primary storage case. Finally, Barbosa et al. 
considered the physical attributes of magnetic disk to 
optimize the time taken to perform the 21gn accesses 
required by suffix arrays[l]. A survey of other text 
searching methods can be found in Faloutsos[3]. 

Table 1: Suffixes of abccabcat 

Figure 1: Pat tree, [n] indicates the bit to test 

character “$,” not in E:, is appended to S. Given the 
string S=abccabca$, the suffixes of S are shown in Table 
1. Each suffix has a minimal prefix that distinguishes 
it from the other suffixes. This unique identifier is very 
important to suffix based search methods and appears 
in the third column of Table 1. A suffix tree is a trie on 
the unique suffix identifiers that has had all degree one 
nodes removed to save space. 

1.1 Suffix Trees and Related Structures Given a 
text string S = srszsa... s,, where each si is a member of 
an alphabet E:, we want to preprocess S such that given a 
pattern P = prpsps...pm,(pi E C), the set {i : Si+.si+m-l 
= P} can be found as efficiently as possible. Suffix 
based search methods operate by searching the set of 
suffixes of the string S. In order to ensure that each suffix 
corresponds to a unique position in the text, a special 

The suffix tree structure considered here is the Pat 
tree of Gonnet et a1.[7]. Pat trees are a form of Digital 
Tree Search[lZ] resulting from a merging of suffix trees 
and the Patricia search method of Morrison[l8]. Given 
a binary encoding of C U { $}, the Pat tree is obtained by 
encoding the suffixes of S as bit strings and storing them 
in a Patricia tree for searching. Each internal node in 
a Pat tree is labelled with the first bit offset at which 
the suffixes in the sub-tree differ and has two children 
containing all the suffixes having a 0 at the differing bit 
in one subtree and those having a 1 in the other. By 
adopting the convention of 0 for the left child and 1 for 
the right, we can encode the suffix tree as a binary tree 
with each internal node labeled by the offset of the bit 
used to distinguish the suffixes under each node. Like a 
suffix tree, the leaves of the Pat tree contain the offsets 
of the appropriate suffixes. Using the encoding a=OO, 
b=Ol, c=lO and $=ll, the Pat tree for the example 
string is given in Figure 1. 

A Pat tree is searched by generating the binary 
encoding of the pattern and then traversing the tree. At 
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each internal node, the bit offset is used to select a bit 
from the pattern. Based on the bit value, the traversal 
continues with either the left or the right child of the 
node. Because the search can skip bits in the pattern, 
the termination of the search is more complex than that 
of simple suffix trees. If the search terminates at a leaf 
node, then the pattern must be compared to the leaf 
suffix to see if it matches. If the end of the pattern is 
encountered before a leaf, then a representative suffix 
from the current subtree must be chosen and compared 
to the pattern. The representative matches the pattern 
if and only if all of the suffixes in the subtree match the 
pattern. In practice, the offset information stored in 
each node is a skip value one less than the difference 
between the offset value of the node and its parent 
(with an implicit parent offset of 0 for the root). The 
actual offset is accumulated as the tree is traversed. 
Provided care is taken to ensure that locating a sample 
for comparison can be performed efficiently, the search 
cost of Pat trees is the same as that of suffix trees, O(m) 
where m is the size of the pattern. 

1.2 Storage Requirements Computer representa- 
tions of suffix based structures require the use of point- 
ers and text offsets. For the purposes of comparison, 
it is useful and reasonable to assume that each of these 
require lg n bits. Manber and Myers performed an anal- 
ysis of various possible representations of suffix trees 
and determined that approximately 17 bytes per index 
point were used in the most compact representations 
[15]. Under the assumption that their system was ca- 
pable of handling documents of at most 232 characters, 
17 bytes equates to 4.25 lgn for the texts considered 
in their report. This result agrees with the “n to 5n 
words” reported by Gonnet et a1.[7]. The use of Pat 
trees can reduce the storage requirements to 3 lg n bits 
if the obvious implementation of a node as two pointers 
and an integer skip is used. On our large test docu- 
ment (about 2 2g characters), this results in a word index 
roughly twice the size of the text - a suffix tree would 
be three times the size. If all the characters in a docu- 
ment are indexed, the size each of these indices will be 
increased by a factor of approximately five. 

2 Compact Pat Trees 

The information stored in the Pat tree can be broken 
into three categories 

l the tree structure, 

l the skip values, 

l the suffix offsets in the leaves. 
By efficiently storing each class of information, our 
approach, Compact Pat Trees (CPTs), matches the 

storage efficiency of other suffix based search structures 
while retaining the functionality of Pat trees. 

2.1 Static Text on Primary Storage In this sec- 
tion we use a compact tree encoding to represent the 
tree portion of the Pat tree and obtain an efficient data 
structure for searching static text in primary storage. 
This structure is the basis of later structures for search- 
ing on secondary storage. In order to implement the Pat 
tree search operations, the encoding of the tree struc- 
ture must provide the following functionality: 

l efficient selection of the left and right children of a 
node, 

l support for the inclusion of constant size “fields” for 
each internal node, the skip, and another constant 
size field for each leaf, the suffix offsets. Given 
a node or leaf, we need to be able to efficiently 
determine the field values. 

l given a nod e, efficiently retrieve the suffix offset 
field information from some leaf descended from the 
node. 

In each case, we require that the operations be per- 
formed in a constant number of operations on lgn 
bit size objects. Finally, we want an encoding that 
is as compact as we can find. Given that there are 

binary trees on n nodes, a compact 

encoding of the tree structure for a Pat tree should re- 
quire about lgC,-1 bits. Using Stirling’s approxima- 
tion to the logarithm of the factorial function, lg C, can 
be shown to be approximately 2n. The survey papers 
of MZkinen[l4] and Katajainen and M&kinen[ 1 l] present 
many techniques for binary presentations of binary trees 
that attain the 2n bound, however none meet the crite- 
ria above. For this application, we use a slightly larger 
encoding developed by Jacobson[lO] because it allows 
direct implementation of tree traversals on the encoded 
form of the tree. Most other representations require 
at least linear time to implement tree traversals[l4]. 
While Jacobson also presents a 2n+o(n) representation, 
we chose the encoding below because it allows a more 
straightforward implementation of the Pat tree and in- 
cludes the size of each subtree. 

Jacobson’s encoding represents each tree as a bit 
string of the form 

1 Header 1 Left Tree Encoding 1 Right Tree Encoding 1 
where the header contains two fields: 

l a single bit indicating which of the two children is 
smaller with an arbitrary choice made in the case 
of a tie, and, 
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1011,101011,11,?? 

lO16i-Yl 
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-- 

Figure 2: Tree with Encoding 

l a prefix coded integer indicating the size of the 
smaller child. Jacobson forms his prefix code for 
an integer i by writing the binary representation of 
i interleaved with a unary encoding of lg i. We use 
a similar code obtained by concatenating the unary 
encoding of lg i+ 1 with the binary encoding of i+ 1 
because it saves one bit per node. The size of the 
encoding is 2 [lg(i + 2)j - 1. More sophisticated 
encodings are possible but lead to only slightly 
smaller total sizes[lO]. 
The critical point is that the encoding is padded so 

that the size of the encoding is independent of shape of 
the tree. This feature allows efficient implementation of 
the traversal operations. 

The size of the encoding is B(n) = 3n - 
2 [lg(n + l)] - 2vz(n + 1) + 2 - [n is odd] where 212 , 
which is defined in[8], is the number of ones in a num- 
bers binary representation. From this equation, it is 
clear that B(n) < 3n so the total storage requirement 
for the binary tree information is less than three bits 
per node. Using this representation, the tree structure 
in the Pat tree example is represented by the bit string 
101110101111-, where the actual value of the last two 
bits is unimportant. The tree in Figure 2 shows this 
tree with each subtree labeled with its description. 

The simple formula for B(n) allows efficient imple- 
mentation of the operations of fetching the left and right 
children of a node. The left child is found immediately 
following the prefix code of the integer giving the size of 
the smaller tree and the right child can be found imme- 
diately after the description of the left child whose size 
can be computed based on the number of nodes in the 
left subtree. This size can in turn be computed from 
the values of “smaller, ” “size of smaller,” and the size 
of the overall tree. Because the tree traversal operation 
above returns, and requires, both the offset of the child’s 
encoding and its size, we can also track the number of 
leaves to the left of the leftmost leaf in the current sub- 
tree. This is achieved by starting an index at zero and 
increasing it by the size of the left subtree plus one each 
time the right child is taken. Keeping this index allows 
us to store the suffix offsets in an array sorted lexico- 
graphically, a suffix array, and to determine the exact 
sub-array that contains the response to the query. 

2.2 Storing the Skip Compressing the skip infor- 
mation requires an understanding of the distribution of 
the skip values. For the purposes of analysing the skips, 
temporarily assume the suffixes are strings of indepen- 
dent uniformly sampled bits with 0 and 1 having equal 
probability. Consider an internal node with Ic leaves in 
its subtree, then the probability that the skip value of 
the node is greater than j is the same as the probability 
that k random bit strings match in their first j+ 1 bits. 
This value is easily seen to be 2-(j+1)(k-1). From this 
formula, we see that the majority of the skip values are 
zero and that the likelihood of higher values decreases 
geometrically. We have verified this behaviour on real 
world documents. Shang also noted the rapid decline in 
the number of large skip values[21]. 

The low likelihood of large skip values leads to a 
simple method of compactly encoding the skip values. 
We reserve a small fixed number of bits to hold the skip 
value for each internal node and introduce a strategy to 
resolve problems caused by skip values that overflow 
this field. We handle overflows by inserting a new 
node (and a leaf) into the tree and distributing the 
skip bits from the original node across the skip fields 
of the new and the original node. The dummy leaf 
node must have some special key value that allows 
it to be easily recognized (typically all OS or all 1s). 
Multiple overflow nodes and leaves can be inserted for 
extremely large skip values. When traversing the tree, 
simply checking for a single leaf with the dummy value 
is sufficient to determine if the skip should be checked 
or the bits concatenated to obtain the true skip value. 
The use of this overflow handling mechanism has one 
slight drawback in that the subtree size is no longer the 
exact size of the answer. However, the subtree size is 
still a good estimate of the size and also an upper bound 
on the size of the answer. 

There are two approximations in the argument 
above that deserve serious consideration. The first is 
the assumption that the bit strings in the suffixes are 
independent. Clearly, being possibly overlapping sub- 
strings of a single string, this is not the case. However, 
this approximation does not seem inappropriate because 
of the, assumed large, size of the underlying string. 
The more serious problem above is the assumption that 
the binary string is generated by a uniform symmetric 
random process. This is not a good model of written 
text or other large documents. For example, English 
text coded in ASCII will have the high order bit of 
each byte set to zero and is unlikely to contain the 
codes 0..31. In order to resolve this weakness in our 
arguments (and the structures based on it), we convert 
all input strings to an approximation to a uniform 
symmetric binary string by running them through a 
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data compression algorithm. Our current search engine 
uses fixed size codes and a simple uniform model of 
the text. While this model is the same as using a 
compact encoding for the character set, so far it has 
proven adequate. We are considering the use of a model 
including digrams for a future version of the search 
engine. The data structure will continue to operate 
without this encoding step but the loss of one or more 
bits per index point in storage efficiency should be 
expected. 

1 Name 1 #Characters I SitWords 1 
I , . . , ., 1 

] Holmes ] 238551 I 43745 I 
Bible 5553621 1202504 
OED 545578702 108687644 , 

Table 2: Sample Documents 

Text Skip Field #Overflow Index Size 
Size Nodes (bytes) 

THEOREM 2.1. Under the assumptions above, the 
expected size of the Compact Pat Tree can be made less 

than 3.5 + lg n + lg lg n + 0 (v) bits per node. We 

achieve this by setting the skip field size to lg lg lg n. 

Proof. Under the assumptions and using the skip 
field size above, 
-+ n 

2(k k nP+1 + (124% is a significant over- 
%%nate of the num er of overflow nodes obtained by % +-*- 
assuming each internal node has exactly two suffixes 
below it. The total storage is then less than lgn + 

(3+lgn+lglglgn) (n- l+ & + 2(lgl~m)2+1 + . ..)- 
Multiplying through and dividing by n, we obtain the 
desired result. 

Table 3: Index Sizes for Sample Documents 

l Bible, an SGML[20] encoded version of the King 
James Bible, 

l 

In real text searching applications, the index is 
slightly larger because a larger skip field size is more 
effective. We typically use a skip field size of 5 or 6 
depending on the document size. Even these larger sizes 
result in a very small index requiring about 10 bits per 
index point to represent the trie. For storing the skip 
values, we simply add a third constant size field to the 
tree header and modify B(n) appropriately by adding 
n times the size of the skip field. 

The 

OED, an SGML encoded version of the Oxford 
English Dictionary[lS]. 
search engine performs case conversion and the 

2.3 Suffix Offsets The suffix offsets take up the bulk 
of the storage used by the CPT and other suffix based 
structures. While the suffix offsets do not easily admit 
compression, they can be stored more compactly if we 
are willing to make some sacrifices on performance. 
To do this, we use a technique also used by Shang’s 
PaTries[21]. If k 1 ow order bits in the suffix offsets are 
omitted from the CPT structure, nk bits are saved in 
the final index. This change incurs a 2k cost in the 
searching time and a 2” multiplicative factor on the 
conversion of a node to its list of leaf offsets because each 
offset value will require a search through 2k characters 
to locate the exact occurrence of the pattern. 

mapping of special characters to blanks prior to index- 
ing and searching. Various properties of these docu- 
ments are shown in Table 2. Table 3 shows the number 
of overflow nodes and the resulting index sizes for two 
of the sample documents (the OED is too large for con- 
struction of an index in primary storage). From this ta- 
ble we see that the optimal skip sizes are 5 for Holmes 
and 6 for the Bible. In addition, the size of the final 
index for non-optimal values is still close to the optimal 
size. 

2.4 Empirical Results For presenting empirical re- 
sults on text searching structures, we will use three doc- 
uments as test cases: 

l Holmes, an ASCII encoded extract from the works 
of Sir Arthur Conan Doyle, 

3 Static Text on Secondary Storage 

Searching methods for large text databases must be con- 
cerned with more than asymptotic time requirements; 
storage costs and the exact number of secondary stor- 
age access are also critical. If the index requires k bytes 
per character in the text, the index size will be k times 
the size of the document. For large documents the stor- 
age cost quickly becomes prohibitive as k gets large. 
Similarly, while the asymptotic operation count of the 
algorithm is important, the number of accesses to sec- 
ondary storage is likely to have a far greater effect on 
the performance, and even the feasibility, of the index. 
The first half of the paper dealt with controlling the 
storage requirements of Pat trees. In the second half of 
the paper we concentrate on controlling the number of 
accesses to secondary storage during searching. 
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3.1 Partitioned Compact Pat Trees To control 
the accesses to secondary storage during searching we 
use the method suggested by Gonnet et a1.[7]: decom- 
posing the tree into disk block sized pieces (each called a 
partition). Each partition of the tree is stored using the 
CPT structure from the previous sections. The only 
change required to the CPT structure for storing the 
partitions is that the offset pointers in a block may now 
point to either a suffix in the text or a subtree (partition) 
so an extra bit is required to distinguish these two cases. 
We use a greedy bottom up partitioning algorithm and 
show that such a partitioning minimizes the maximum 
number of blocks accessed when traveling from the root 
to any leaf. The algorithm for building the index on 
secondary storage will be described in the full version 
of the paper. 

The partitioning algorithm starts by assigning each 
leaf its own partition and a page depth of 1. Working 
upward, we apply the rules below at each node. A 
simple induction proof shows that the rules above 
produce a min-max optimal partitioning of the tree such 
that no other optimal partitioning has a smaller root 
block. The proof of optimality parallels the partitioning 
rules. 

If both children have the same page depth 
(1) if both children’s partitions and the 

current node will fit in a block, 
merge the partitions of the children 

and add the current node 
set the page depth of the current 

node to that of the children 

(2) else 
close off the partitions of the 

children 
create a new partition for the 

current node 
set the page depth of the current 

node to one more than that of 
the children 

else 
close off the partition of the child 

with the lesser depth 
(3) if the current node plus the partition 

of the larger child will fit on 
a block 

add the current node to the child’s 
part it ion 

set the page depth of the current 
node to match the child 

(4) else 
close off the partition of the 

remaining child 
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create a new partition for the 
current node 

set the page depth of the current 
node to one more than that of 
the child 

While the partitioning rules minimize the maximum 
number of secondary storage accesses, they can produce 
many small pages and poor fill ratios. There are several 
possible methods to alleviate this problem, including: 

1. 

2. 

3. 

4. 

when a page is closed off, scan its children from 
smallest to largest to determine if they can be 
merged with the parent, 

modify the rules to ensure a certain minimum fill 
ratio (e.g. all pages have to be l/4 or l/5 full), 

pack multiple logical pages in each physical page, 

ignore physical page boundaries when placing logi- 
cal pages on disk. 

Change one should be a part of any implementation 
of these rules. Change two will result in non-optimal 
partitioning in some cases but should be worthwhile in a 
practical system. The third technique should drastically 
minimize the storage requirements in practice but has a 
low guaranteed storage utilization and introduces some 
complications in the management of secondary storage. 
The last technique minimizes the storage requirements 
at a small cost for the potential transfer of an extra page 
of data on each access. In our current implementation 
for static text we use the first and fourth techniques. 

We can bound the maximum number of pages 
traversed on any root leaf path in terms of the number 
of nodes in the Pat tree and the depth of the Pat tree. 

THEOREM 3.1. The page depth is less than 1 + 

kkJlr 1 +- 2log, n where H is the height of the Pat tree. 

Szpankowski shows that under very reasonable condi- 
tions on the text, H is logarithmic in n with probability 
one[22]. Linking these two results we obtain an expected 
performance bound logarithmic in n. 

3.2 Empirical Results When producing the empiri- 
cal results for indices on secondary storage, the optimal 
skip field sizes from the primary storage case were used 
for Holmes and the Bible (see Table 3). For the OED, 
a skip field size of six was used based on the experience 
with the Bible. 

In each case, the depth of the tree is equal to 
the number of accesses to secondary storage needed to 
perform a search if the root block is held in memory. In 
the static case, we do not enforce page alignment so an 
access will consist of a seek followed by the transfer of at 
most two pages worth of data. The results above are for 
full suffix pointers. Truncating the suffix offsets would 
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Text 1 Page Size 1 Depth 1 #Pages 1 Index Size ] 

I 1 1OOK I2 1 18409 ( 577617776 1 

Table 4: Results for Static Text on Secondary Storage 

significantly reduce the size of the indices at a cost in 
computation time but without significantly increasing 
the number of disk seeks. For each seek, a small amount 
more data would be read. The bottom result in Table 4 
is only of interest for indices on CD-ROM where the very 
high seek time makes the reading of large quantities of 
data worthwhile. The transfer time for the 1OOK page 
size is still significantly less than the expected seek time 
for this device. We note that in this case of a CD-ROM 
sized text and a similarly sized index we can perform 
searching using two accesses to the disk. While we do 
not cover the index building algorithm here, we will 
state that the indices on the OED were built in 5 to 
6 hours on a fast machine using 32 Mb of memory. In 
our experience, this is competitive with other indexing 
algorithms. 

4 Dynamic Text on Secondary Storage 

The general approach to updating the static representa- 
tion from the previous section is to search each suffix of 
the modified document in the CPT tree and then make 
appropriate changes to the structure based on the path 
searched. While updating the tree, it may become nec- 
essary to re-partition the tree in order to retain optimal- 
ity. Because the partitioning algorithm used is based on 
information local to a subtree, the effects of repartition- 
ing are limited to the root-change point path. In fact, we 
do not have to consider all nodes on that path but can 
limit ourselves to those nodes at the partition bound- 
aries. This differs considerably from other partitioning 
strategies, for example the method of Lukes[l3], where 
a local change to a tree can have global side-effects on 
the partition. 

The updating of the CPT is best discussed in terms 
of the insertion or deletion of suffixes because other up- 

date models use suffix operations in their implemen- 
tation. While constant (amortized) time solutions to 
the s&ix insertion and deletion problem do exist (see 
McCreight[lG]), they require the maintenance of extra 
data in each node. The solutions used here require time 
proportional to the tree depth but operate on the com- 
pact form of the tree. 

To insert a new suffix into a CPT, the following 
steps are taken: 

1. search the tree using the new suffix until we reach 
a leaf 

2. determine the first bit position at which the new 
suffix and the suffix located at the leaf from step 1 
differ 

3. find the block containing the edge on the root-leaf 
path that skips over the bit position above 

4. split the edge by inserting a new node having as 
children the new suffix and the old subtree reached 
by the edge 

5. set the skip numbers of the new node and the old 
subtree appropriately 

Deletion of a suffix is also easily handled: 
1. 

2. 

3. 

locate the suffix’s leaf in the CPT and fetch the 
block 

remove the suffix and its parent by replacing the 
parent with a straight through edge 

update the skip value in the suffix’s ex-sibling 
After these operations, we may have to adjust the 
partitioning so that it still matches the rules given 
earlier. 

In order to update the CPT so that it reflects 
a change in the underlying character string, multiple 
tree operations may be required. For example, when 
changing the third character of the example string 
abccabcd from a c to a b, we must delete the suffixes cc, 
bee and abcc and replace them with bcab, bb, and abb. 
The distance we must scan backward is bounded by the 
maximum offset in the tree which is in turn expected 
to be logarithmic in the text size[22]. A second, real 
world, model of updates allows the insertion, deletion 
and replacement of entire sub-documents in a database. 
Under this model of updates, the number of suffix 
operations is the same as the number of words in the 
documents being manipulated. We use the latter model 
in our tests. This model is equivalent to the External 
Dynamic Substring Search(EDSS) problem studied by 
Ferragina and Grossi[4]. An update to a block can cause 
two situations that require corrective action: 

l on insert, a block may become too large, 
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Text Depth #Pages Fill Disk Writes 
Ratio per word 

Holmes 2 197 43% 1.01 
Bible 3 6914 38% 1.02 

Table 5: Update Costs for Dynamic Text 

l on delete, a block may become small enough to 
hold its root’s parent and its sibling’s block when 
the sibling has the same page depth 

In each case, we re-apply the partitioning algorithm to 
a subset of the nodes on the root-change point path. 
Consider the case of a simple insertion without any 
overflow nodes (it is conceivable but unlikely that each 
overflow node could cause the consideration of new 
nodes). After locating the block containing the insertion 
point we need only check if the partition will still fit in 
a block after the node is inserted. If it does, we write 
the data back and the insertion is done. If not, the 
root is moved into either a new partition or its parent’s 
partition, depending on the page depth of the parent 
block, and the process continues recursively. In such 
a case, the sibling will also have to be moved into its 
own partition if it is not already in one. Empirically, we 
observe that we expect only slightly more than one page 
write per node insertion. This behaviour likely results 
from the low page fill ratios and we expect a slight 
increase in the number of writes/word when we apply 
the modified partitioning rules or packing methods to 
this case.’ The case for deletion is very similar. Because 
the partitioning produced is dependent only on the 
current Pat tree, and hence the text, the quality of the 
partitioning does not degrade over time and periodic 
re-indexing is not necessary. 

In order to test the CPT under the second model 
of updates, the two smaller test documents were broken 
down into sub-documents. We then tested the deletion 

and subsequent insertion of complete sub-documents. 
The number of blocks written for each word in the newly 
inserted document are shown in Figure 5. We have 
not as yet made any attempt to address the low fill 
ratios in the dynamic case. Several strategies including 
the alternate partitioning rules and some limited bin 
packing could be applied to this problem. The results 
above should be treated as preliminary because we are 
still investigating the dynamic CPT case. 

5 Conclusions 

In this paper we show several representations for Pat 
trees that use significantly less storage than previous 
methods. In particular, we present: 

1. 

2. 

3. 

CLARKANDMUNRO 

a new representation for static Pat trees in primary 
storage that allows efficient searching with an ex- 
pect storage cost of only 3.5 + Ig n + Iglglgn bits 
per node for random documents. We also demon- 
strate the structure’s practicality on realistic test 
documents. 

a new representation for static Pat trees in sec- 
ondary storage that is little larger than a suffix ar- 
ray and offers significantly better performance than 
that offered by suffix arrays. 

methods for managing the structure mentioned in 
point 2 that allow us to efficiently handle updates 
to documents on secondary storage. 
In addition to its uses in string processing, we be- 

lieve the CPT structure for searching static text in pri- 
mary storage will find uses in computational biochem- 
istry where it will allow fast searching of even longer 
strings of genetic information. The structures presented 
here for searching on secondary storage are extremely 
practical solutions to the efficient phrase searching of 
large dynamic documents. It is yet to be seen if their 
added functionality is sufficient to make them a rival of 
inverted word lists in the large text database field. The 
new structures are clearly more suitable for many ap- 
plications because of their ability to handle phrase and 
regular expression searching. While the CPT is more 
compact than traditional representations of suffix trees, 
it is still larger than an inverted word list which typi- 
cally requires about 60-70% of the text size (as an ex- 
periment in data compression, Witten, Bell and Nevill 
reduced this to 30% of the text size[24]). Depending on 
the structure used to store the inverted word lists, the 
CPT structures may offer faster performance in addition 
to their more flexible searching. 

5.1 Acknowledgments The authors thank the ref- 
erees for pointers to some useful references and P. Fer- 
ragina and R. Grossi for supplying a preliminary version 
of their paper [6]. 
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