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Abstract

This paper presents a set of architecturally and workload-
inspired algorithmic and engineering improvements
to the popular Memcached system that substantially
improve both its memory efficiency and throughput.
These techniques—optimistic cuckoo hashing, a com-
pact LRU-approximating eviction algorithm based upon
CLOCK, and comprehensive implementation of opti-
mistic locking—enable the resulting system to use 30%
less memory for small key-value pairs, and serve up to
3x as many queries per second over the network. We
have implemented these modifications in a system we
call MemC3—Memcached with CLOCK and Concur-
rent Cuckoo hashing—but believe that they also apply
more generally to many of today’s read-intensive, highly
concurrent networked storage and caching systems.

1 Introduction

Low-latency access to data has become critical for many
Internet services in recent years. This requirement has
led many system designers to serve all or most of certain
data sets from main memory—using the memory either
as their primary store [19, 26, 21, 25] or as a cache to
deflect hot or particularly latency-sensitive items [10].

Two important metrics in evaluating these systems are
performance (throughput, measured in queries served per
second) and memory efficiency (measured by the over-
head required to store an item). Memory consumption is
important because it directly affects the number of items
that system can store, and the hardware cost to do so.

This paper demonstrates that careful attention to algo-
rithm and data structure design can significantly improve
throughput and memory efficiency for in-memory data
stores. We show that traditional approaches often fail
to leverage the target system’s architecture and expected
workload. As a case study, we focus on Memcached [19],
a popular in-memory caching layer, and show how our
toolbox of techniques can improve Memcached’s perfor-
mance by 3× and reduce its memory use by 30%.

Standard Memcached, at its core, uses a typical hash
table design, with linked-list-based chaining to handle
collisions. Its cache replacement algorithm is strict LRU,
also based on linked lists. This design relies on locking
to ensure consistency among multiple threads, and leads
to poor scalability on multi-core CPUs [11].

This paper presents MemC3 (Memcached with
CLOCK and Concurrent Cuckoo Hashing), a complete
redesign of the Memcached internals. This re-design
is informed by and takes advantage of several observa-
tions. First, architectural features can hide memory access
latencies and provide performance improvements. In par-
ticular, our new hash table design exploits CPU cache
locality to minimize the number of memory fetches re-
quired to complete any given operation; and it exploits
instruction-level and memory-level parallelism to overlap
those fetches when they cannot be avoided.

Second, MemC3’s design also leverages workload char-
acteristics. Many Memcached workloads are predomi-
nately reads, with few writes. This observation means
that we can replace Memcached’s exclusive, global lock-
ing with an optimistic locking scheme targeted at the
common case. Furthermore, many important Memcached
workloads target very small objects, so per-object over-
heads have a significant impact on memory efficiency.
For example, Memcached’s strict LRU cache replacement
requires significant metadata—often more space than the
object itself occupies; in MemC3, we instead use a com-
pact CLOCK-based approximation.

The specific contributions of this paper include:

• A novel hashing scheme called optimistic cuckoo
hashing. Conventional cuckoo hashing [23] achieves
space efficiency, but is unfriendly for concurrent oper-
ations. Optimistic cuckoo hashing (1) achieves high
memory efficiency (e.g., 95% table occupancy); (2)
allows multiple readers and a single writer to concur-
rently access the hash table; and (3) keeps hash table
operations cache-friendly (Section 3).
• A compact CLOCK-based eviction algorithm that re-

quires only 1 bit of extra space per cache entry and
supports concurrent cache operations (Section 4).
• Optimistic locking that eliminates inter-thread syn-
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function stock Memcached MemC3

Hash Table

concurrency serialized
concurrent lookup,

serialized insert
lookup performance slower faster
insert performance faster slower
space 13.3n Bytes ∼ 9.7n Bytes

Cache Mgmt

concurrency serialized
concurrent update,
serialized eviction

space 18n Bytes n bits

Table 1: Comparison of operations. n is the number
of existing key-value items.

chronization while ensuring consistency. The opti-
mistic cuckoo hash table operations (lookup/insert)
and the LRU cache eviction operations both use this
locking scheme for high-performance access to shared
data structures (Section 4).

Finally, we implement and evaluate MemC3, a
networked, in-memory key-value cache, based on
Memcached-1.4.13.1 Table 1 compares MemC3 and stock
Memcached. MemC3 provides higher throughput using
significantly less memory and computation as we will
demonstrate in the remainder of this paper.

2 Background

2.1 Memcached Overview
Interface Memcached implements a simple and light-
weight key-value interface where all key-value tuples are
stored in and served from DRAM. Clients communicate
with the Memcached servers over the network using the
following commands:

• SET/ADD/REPLACE(key, value): add a (key,
value) object to the cache;
• GET(key): retrieve the value associated with a key;
• DELETE(key): delete a key.

Internally, Memcached uses a hash table to index the
key-value entries. These entries are also in a linked list
sorted by their most recent access time. The least recently
used (LRU) entry is evicted and replaced by a newly
inserted entry when the cache is full.

Hash Table To lookup keys quickly, the location of each
key-value entry is stored in a hash table. Hash collisions
are resolved by chaining: if more than one key maps
into the same hash table bucket, they form a linked list.

1Our prototype does not yet provide the full memcached api.

Slab1 header

Slab2 header

Hash table 
w/ chaining per-slab LRU Linked-list 

Figure 1: Memcached data structures.

Chaining is efficient for inserting or deleting single keys.
However, lookup may require scanning the entire chain.

Memory Allocation Naive memory allocation (e.g., mal-
loc/free) could result in significant memory fragmentation.
To address this problem, Memcached uses slab-based
memory allocation. Memory is divided into 1 MB pages,
and each page is further sub-divided into fixed-length
chunks. Key-value objects are stored in an appropriately-
size chunk. The size of a chunk, and thus the number of
chunks per page, depends on the particular slab class. For
example, by default the chunk size of slab class 1 is 72
bytes and each page of this class has 14563 chunks; while
the chunk size of slab class 43 is 1 MB and thus there is
only 1 chunk spanning the whole page.

To insert a new key, Memcached looks up the slab
class whose chunk size best fits this key-value object. If a
vacant chunk is available, it is assigned to this item; if the
search fails, Memcached will execute cache eviction.

Cache policy In Memcached, each slab class maintains
its own objects in an LRU queue (see Figure 1). Each
access to an object causes that object to move to the head
of the queue. Thus, when Memcached needs to evict
an object from the cache, it can find the least recently
used object at the tail. The queue is implemented as a
doubly-linked list, so each object has two pointers.

Threading Memcached was originally single-threaded.
It uses libevent for asynchronous network I/O call-
backs [24]. Later versions support multi-threading but use
global locks to protect the core data structures. As a result,
operations such as index lookup/update and cache evic-
tion/update are all serialized. Previous work has shown
that this locking prevents current Memcached from scal-
ing up on multi-core CPUs [11].

Performance Enhancement Previous solutions [4, 20,
13] shard the in-memory data to different cores. Shard-
ing eliminates the inter-thread synchronization to permit
higher concurrency, but under skewed workloads it may
also exhibit imbalanced load across different cores or
waste the (expensive) memory capacity. Instead of simply
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sharding, we explore how to scale performance to many
threads that share and access the same memory space;
one could then apply sharding to further scale the system.

2.2 Real-world Workloads: Small and
Read-only Requests Dominate

Our work is informed by several key-value workload char-
acteristics published recently by Facebook [3].

First, queries for small objects dominate. Most keys
are smaller than 32 bytes and most values no more than
a few hundred bytes. In particular, there is one common
type of request that almost exclusively uses 16 or 21 Byte
keys and 2 Byte values.

The consequence of storing such small key-value ob-
jects is high memory overhead. Memcached always allo-
cates a 56-Byte header (on 64-bit servers) for each key-
value object regardless of the size. The header includes
two pointers for the LRU linked list and one pointer for
chaining to form the hash table. For small key-value ob-
jects, this space overhead cannot be amortized. Therefore
we seek more memory efficient data structures for the
index and cache.

Second, queries are read heavy. In general, a GET/SET
ratio of 30:1 is reported for the Memcached workloads in
Facebook. Important applications that can increase cache
size on demand show even higher fractions of GETs (e.g.,
99.8% are GETs, or GET/SET=500:1). Note that this ratio
also depends on the GET hit ratio, because each GET miss
is usually followed by a SET to update the cache by the
application.

Though most queries are GETs, this operation is not
optimized and locks are used extensively on the query
path. For example, each GET operation must acquire (1)
a lock for exclusive access to this particular key, (2) a
global lock for exclusive access to the hash table; and (3)
after reading the relevant key-value object, it must again
acquire the global lock to update the LRU linked list. We
aim to remove all mutexes on the GET path to boost the
concurrency of Memcached.

3 Optimistic Concurrent Cuckoo
Hashing

In this section, we present a compact, concurrent and
cache-aware hashing scheme called optimistic concurrent
cuckoo hashing. Compared with Memcached’s original
chaining-based hash table, our design improves memory
efficiency by applying cuckoo hashing [23]—a practical,
advanced hashing scheme with high memory efficiency
and O(1) amortized insertion time and retrieval. How-
ever, basic cuckoo hashing does not support concurrent

read/write access; it also requires multiple memory ref-
erences for each insertion or lookup. To overcome these
limitations, we propose a collection of new techniques
that improve basic cuckoo hashing in concurrency, mem-
ory efficiency and cache-friendliness:

• An optimistic version of cuckoo hashing that supports
multiple-reader/single writer concurrent access, while
preserving its space benefits;
• A technique using a short summary of each key to

improve the cache locality of hash table operations;
and
• An optimization for cuckoo hashing insertion that im-

proves throughput.

As we show in Section 5, combining these techniques
creates a hashing scheme that is attractive in practice:
its hash table achieves over 90% occupancy (compared
to 50% for linear probing, or needing the extra pointers
required by chaining) [? ]. Each lookup requires only two
parallel cacheline reads followed by (up to) one memory
reference on average. In contrast, naive cuckoo hashing
requires two parallel cacheline reads followed by (up
to) 2N parallel memory references if each bucket has N
keys; and chaining requires (up to) N dependent memory
references to scan a bucket of N keys. The hash table
supports multiple readers and a single writer, substantially
speeding up read-intensive workloads while maintaining
equivalent performance for write-heavy workloads.

Interface The hash table provides Lookup, Insert
and Delete operations for indexing all key-value ob-
jects. On Lookup, the hash table returns a pointer to the
relevant key-value object, or “does not exist” if the key
can not be found. On Insert, the hash table returns true
on success, and false to indicate the hash table is too full.2

Delete simply removes the key’s entry from the hash
table. We focus on Lookup and Insert as Delete is
very similar to Lookup.

Basic Cuckoo Hashing Before presenting our tech-
niques in detail, we first briefly describe how to perform
cuckoo hashing. The basic idea of cuckoo hashing is to
use two hash functions instead of one, thus providing each
key two possible locations where it can reside. Cuckoo
hashing can dynamically relocate existing keys and refine
the table to make room for new keys during insertion.

Our hash table, as shown in Figure 2, consists of an
array of buckets, each having 4 slots.3 Each slot contains
a pointer to the key-value object and a short summary of

2As in other hash table designs, an expansion process can increase
the cuckoo hash table size to allow for additional inserts.

3 Our hash table is 4-way set-associative. Without set-associativity,
basic cuckoo hashing allows only 50% of the table entries to be occupied
before unresolvable collisions occur. It is possible to improve the space
utilization to over 90% by using a 4-way (or higher) set associative hash
table. [9]
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Cuckoo hash table

tag ptr 
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Figure 2: Hash table overview: The hash table is 4-
way set-associative. Each key is mapped to 2 buck-
ets by hash functions and associated with 1 version
counter; Each slot stores a tag of the key and a pointer
to the key-value item. Values in gray are used for op-
timistic locking and must be accessed atomically.

the key called a tag. To support keys of variable length,
the full keys and values are not stored in the hash table,
but stored with the associated metadata outside the table
and referenced by the pointer. A null pointer indicates
this slot is not used.

Each key is mapped to two random buckets, so
Lookup checks all 8 candidate keys from every slot. To
insert a new key x into the table, if either of the two buck-
ets has an empty slot, it is then inserted in that bucket;
if neither bucket has space, Insert selects a random
key y from one candidate bucket and relocates y to its
own alternate location. Displacing y may also require
kicking out another existing key z, so this procedure may
repeat until a vacant slot is found, or until a maximum
number of displacements is reached (e.g., 500 times in
our implementation). If no vacant slot found, the hash
table is considered too full to insert and an expansion
process is scheduled. Though it may execute a sequence
of displacements, the amortized insertion time of cuckoo
hashing is O(1) [23].

3.1 Tag-based Lookup/Insert
To support keys of variable length and keep the index
compact, the actual keys are not stored in the hash table
and must be retrieved by following a pointer. We propose
a cache-aware technique to perform cuckoo hashing with
minimum memory references by using tags—a short hash
of the keys (one-byte in our implementation). This tech-
nique is inspired by “partial-key cuckoo hashing” which
we proposed in previous work [17], but eliminates the
prior approach’s limitation in the maximum table size.

Cache-friendly Lookup The original Memcached
lookup is not cache-friendly. It requires multiple depen-
dent pointer dereferences to traverse a linked list:

K V K V K Vlookup

Neither is basic cuckoo hashing cache-friendly: checking
two buckets on each Lookup makes up to 8 (parallel)
pointer dereferences. In addition, displacing each key on
Insert also requires a pointer dereference to calculate
the alternate location to swap, and each Insert may
perform several displacement operations.

Our hash table eliminates the need for pointer deref-
erences in the common case. We compute a 1-Byte tag
as the summary of each inserted key, and store the tag in
the same bucket as its pointer. Lookup first compares
the tag, then retrieves the full key only if the tag matches.
This procedure is as shown below (T represents the tag)

T T T T K V
lookup

It is possible to have false retrievals due to two different
keys having the same tag, so the fetched full key is further
verified to ensure it was indeed the correct one. With a
1-Byte tag by hashing, the chance of tag-collision is only
1/28 = 0.39%. After checking all 8 candidate slots, a
negative Lookup makes 8 × 0.39% = 0.03 pointer deref-
erences on average. Because each bucket fits in a CPU
cacheline (usually 64-Byte), on average each Lookup
makes only 2 parallel cacheline-sized reads for checking
the two buckets plus either 0.03 pointer dereferences if
the Lookup misses or 1.03 if it hits.

Cache-friendly Insert We also use the tags to avoid re-
trieving full keys on Insert, which were originally
needed to derive the alternate location to displace keys. To
this end, our hashing scheme computes the two candidate
buckets b1 and b2 for key x by

b1 = HASH(x) // based on the entire key
b2 = b1 ⊕ HASH(tag) // based on b1 and tag of x

b2 is still a random variable uniformly distributed4; more
importantly b1 can be computed by the same formula
from b2 and tag. This property ensures that to displace a
key originally in bucket b—no matter if b is b1 or b2— it
is possible to calculate its alternate bucket b′ from bucket
index b and the tag stored in bucket b by

b′ = b ⊕ HASH(tag) (1)

As a result, Insert operations can operate using only
information in the table and never have to retrieve keys.

4 b2 is no longer fully independent from b1. For a 1-Byte tag, there
are up to 256 different values of b2 given a specific b1. Microbenchmarks
in Section 5 show that our algorithm still achieves close-to-optimal load
factor, even if b2 has some dependence on b1.
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Figure 3: Cuckoo path. ∅ represents an empty slot.

3.2 Concurrent Cuckoo Hashing

Effectively supporting concurrent access to a cuckoo hash
table is challenging. A previously proposed scheme im-
proved concurrency by trading space [12]. Our hashing
scheme is, to our knowledge, the first approach to support
concurrent access (multi-reader/single-writer) while still
maintaining the high space efficiency of cuckoo hashing
(e.g., > 90% occupancy).

For clarity of presentation, we first define a cuckoo
path as the sequence of displaced keys in an Insert
operation. In Figure 3 “a ⇒ b ⇒ c” is one cuckoo path
to make one bucket available to insert key x.

There are two major obstacles to making the sequential
cuckoo hashing algorithm concurrent:

1. Deadlock risk (writer/writer): An Insert may mod-
ify a set of buckets when moving the keys along the
cuckoo path until one key lands in an available bucket.
It is not known before swapping the keys how many
and which buckets will be modified, because each dis-
placed key depends on the one previously kicked out.
Standard techniques to make Insert atomic and
avoid deadlock, such as acquiring all necessary locks
in advance, are therefore not obviously applicable.

2. False misses (reader/writer): After a key is kicked
out of its original bucket but before it is inserted to its
alternate location, this key is unreachable from both
buckets and temporarily unavailable. If Insert is
not atomic, a reader may complete a Lookup and
return a false miss during a key’s unavailable time.
E.g., in Figure 3, after replacing b with a at bucket
4, but before b relocates to bucket 1, b appears at
neither bucket in the table. A reader looking up b at
this moment may return negative results.

The only scheme previously proposed for concurrent
cuckoo hashing [12] that we know of breaks up Inserts
into a sequence of atomic displacements rather than lock-
ing the entire cuckoo path. It adds extra space at each
bucket as an overflow buffer to temporarily host keys

swapped from other buckets, and thus avoid kicking out
existing keys. Hence, its space overhead (typically two
more slots per bucket as buffer) is much higher than the
basic cuckoo hashing.

Our scheme instead maintains high memory efficiency
and also allows multiple-reader concurrent access to the
hash table. To avoid writer/writer deadlocks, it allows
only one writer at a time—a tradeoff we accept as our tar-
get workloads are read-heavy. To eliminate false misses,
our design changes the order of the basic cuckoo hashing
insertion by:

1) separating discovering a valid cuckoo path from the
execution of this path. We first search for a cuckoo
path, but do not move keys during this search phase.

2) moving keys backwards along the cuckoo path. After a
valid cuckoo path is known, we first move the last key
on the cuckoo path to the free slot, and then move the
second to last key to the empty slot left by the previous
one, and so on. As a result, each swap affects only
one key at a time, which can always be successfully
moved to its new location without any kickout.

Intuitively, the original Insert always moves a selected
key to its other bucket and kicks out another existing key
unless an empty slot is found in that bucket. Hence, there
is always a victim key “floating” before Insert com-
pletes, causing false misses. In contrast, our scheme first
discovers a cuckoo path to an empty slot, then propagates
this empty slot towards the key for insertion along the
path. To illustrate our scheme in Figure 3, we first find a
valid cuckoo path “a⇒ b⇒ c” for key x without editing
any buckets. After the path is known, c is swapped to
the empty slot in bucket 3, followed by relocating b to
the original slot of c in bucket 1 and so on. Finally, the
original slot of a will be available and x can be directly
inserted into that slot.

3.2.1 Optimization: Optimistic Locks for Lookup

Many locking schemes can work with our proposed con-
current cuckoo hashing, as long as they ensure that during
Insert, all displacements along the cuckoo path are
atomic with respect to Lookups. The most straightfor-
ward scheme is to lock the two relevant buckets before
each displacement and each Lookup. Though simple,
this scheme requires locking twice for every Lookup and
in a careful order to avoid deadlock.

Optimizing for the common case, our approach takes
advantage of having a single writer to synchronize
Insert and Lookups with low overhead. Instead of
locking on buckets, it assigns a version counter for each
key, updates its version when displacing this key on
Insert, and looks for a version change during Lookup
to detect any concurrent displacement.
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Lock Striping [12] The simplest way to maintain each
key’s version is to store it inside each key-value object.
This approach, however, adds one counter for each key
and there could be hundred of millions of keys. More im-
portantly, this approach leads to a race condition: to check
or update the version of a given key, we must first lookup
in the hash table to find the key-value object (stored ex-
ternal to the hash table), and this initial lookup is not
protected by any lock and thus not thread-safe.

Instead, we create an array of counters (Figure 2). To
keep this array small, each counter is shared among mul-
tiple keys by hashing (e.g., the i-th counter is shared by
all keys whose hash value is i). Our implementation
keeps 8192 counters in total (or 32 KB). This permits the
counters to fit in cache, but allows substantial concurrent
access. It also keeps the chance of a “false retry” (re-
reading a key due to modification of an unrelated key) to
roughly 0.01%. All counters are initialized to 0 and only
read/updated by atomic memory operations to ensure the
consistency among all threads.

Optimistic Locking [15] Before displacing a key, an
Insert process first increases the relevant counter by
one, indicating to the other Lookups an on-going update
for this key; after the key is moved to its new location, the
counter is again increased by one to indicate the comple-
tion. As a result, the key version is increased by 2 after
each displacement.

Before a Lookup process reads the two buckets for
a given key, it first snapshots the version stored in its
counter: If this version is odd, there must be a concurrent
Insertworking on the same key (or another key sharing
the same counter), and it should wait and retry; otherwise
it proceeds to the two buckets. After it finishes reading
both buckets, it snapshots the counter again and compares
its new version with the old version. If two versions differ,
the writer must have modified this key, and the Lookup
should retry. The proof of correctness in the Appendix
covers the corner cases.

3.2.2 Optimization: Multiple Cuckoo Paths

Our revised Insert process first looks for a valid cuckoo
path before swapping the key along the path. Due to
the separation of search and execution phases, we apply
the following optimization to speed path discovery and
increase the chance of finding an empty slot.

Instead of searching for an empty slot along one cuckoo
path, our Insert process keeps track of multiple paths
in parallel. At each step, multiple victim keys are “kicked
out,” each key extending its own cuckoo path. Whenever
one path reaches an available bucket, this search phase
completes.

With multiple paths to search, insert may find an empty
slot earlier and thus improve the throughput. In addition,

it improves the chance for the hash table to store a new key
before exceeding the maximum number of displacements
performed, thus increasing the load factor. The effect of
having more cuckoo paths is evaluated in Section 5.

4 Concurrent Cache Management

Cache management and eviction is the second important
component of MemC3. When serving small key-value
objects, this too becomes a major source of space over-
head in Memcached, which requires 18 Bytes for each key
(i.e., two pointers and a 2-Byte reference counter) to en-
sure that keys can be evicted safely in a strict LRU order.
String LRU cache management is also a synchronization
bottleneck, as all updates to the cache must be serialized
in Memcached.

This section presents our efforts to make the cache man-
agement space efficient (1 bit per key) and concurrent (no
synchronization to update LRU) by implementing an ap-
proximate LRU cache based on the CLOCK replacement
algorithm [6]. CLOCK is a well-known algorithm; our
contribution lies in integrating CLOCK replacement with
the optimistic, striped locking in our cuckoo algorithm to
reduce both locking and space overhead.

As our target workloads are dominated by small ob-
jects, the space saved by trading perfect for approximate
LRU allows the cache to store siginifcantly more entries,
which in turn improves the hit ratio. As we will show
in Section 5, our cache management achieves 3× to 10×
the query throughput of the default cache in Memcached,
while also improving the hit ratio.

CLOCK Replacement A cache must implement two
functions related to its replacement policy:

• Update to keep track of the recency after querying
a key in the cache; and
• Evict to select keys to purge when inserting keys

into a full cache.

Memcached keeps each key-value entry in a doubly-
linked-list based LRU queue within its own slab class.
After each cache query, Update moves the accessed
entry to the head of its own queue; to free space when the
cache is full, Evict replaces the entry on the tail of the
queue by the new key-value pair. This ensures strict LRU
eviction in each queue, but unfortunately it also requires
two pointers per key for the doubly-linked list and, more
importantly, all Updates to one linked list are serialized.
Every read access requires an update, and thus the queue
permits no concurrency even for read-only workloads.

CLOCK approximates LRU with improved concur-
rency and space efficiency. For each slab class, we main-
tain a circular buffer and a virtual hand; each bit in the
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buffer represents the recency of a different key-value ob-
ject: 1 for “recently used” and 0 otherwise. Each Update
simply sets the recency bit to 1 on each key access; each
Evict checks the bit currently pointed by the hand. If
the current bit is 0, Evict selects the corresponding key-
value object; otherwise we reset this bit to 0 and advance
the hand in the circular buffer until we see a bit of 0.

Integration with Optimistic Cuckoo Hashing The
Evict process must coordinate with reader threads to en-
sure the eviction is safe. Otherwise, a key-value entry may
be overwritten by a new (key,value) pair after eviction,
but threads still accessing the entry for the evicted key
may read dirty data. To this end, the original Memcached
adds to each entry a 2-Byte reference counter to avoid
this rare case. Reading this per-entry counter, the Evict
process knows how many other threads are accessing this
entry concurrently and avoids evicting those busy entries.

Our cache integrates cache eviction with our optimistic
locking scheme for cuckoo hashing. When Evict se-
lects a victim key x by CLOCK, it first increases key x’s
version counter to inform other threads currently reading
x to retry; it then deletes x from the hash table to make
x unreachable for later readers, including those retries;
and finally it increases key x’s version counter again to
complete the change for x. Note that Evict and the hash
table Insert are both serialized (using locks) so when
updating the counters they can not affect each other.

With Evict as above, our cache ensures consistent
GETs by version checking. Each GET first snapshots the
version of the key before accessing the hash table; if the
hash table returns a valid pointer, it follows the pointer and
reads the value assoicated. Afterwards, GET compares the
latest key version with the snapshot. If the verions differ,
then GET may have observed an inconsistent intermediate
state and must retry. The pseudo-code of GET and SET
is shown in Algorithm 1.

5 Evaluation

This section investigates how the proposed techniques
and optimizations contribute to performance and space
efficiency. We “zoom out” the evaluation targets, starting
with the hash table itself, moving to the cache (includ-
ing the hash table and cache eviction management), and
concluding with the full MemC3 system (including the
cache and network). With all optimizations combined,
MemC3 achieves 3× the throughput of Memcached. Our
proposed core hash table if isolated can achieve 5 million
lookups/sec per thread and 35 million lookups/sec when
accessed by 12 threads.

Algorithm 1: Psuedo code of SET and GET
SET(key, value) //insert (key,value) to cache
begin

lock();
ptr = Alloc(); //try to allocate space
if ptr == NULL then

ptr = Evict(); //cache is full, evict old item
memcpy key, value to ptr;
Insert(key, ptr); //index this key in hashtable
unlock();

GET(key) //get value of key from cache
begin

while true do
vs = ReadCounter(key); //key version
ptr= Lookup(key); //check hash table
if ptr == NULL then return NULL ;
prepare response for data in ptr;
ve = ReadCounter(key); //key version
if vs & 1 or vs != ve then
//may read dirty data, try again
continue

Update(key); //update CLOCK
return response

5.1 Platform
All experiments run on a machine with the following con-
figuration. The CPU of this server is optimized for energy
efficiency rather than high performance, and our system
is CPU intensive, so we expect the absolute performance
would be higher on “beefier” servers.

CPU 2× Intel Xeon L5640 @ 2.27GHz
# cores 2 × 6
LLC 2 × 12 MB L3-cache
DRAM 2 × 16 GB DDR SDRAM
NIC 10Gb Ethernet

5.2 Hash Table Microbenchmark
In the following experiments, we first benchmark the
construction of hash tables and measure the space effi-
ciency. Then we examine the lookup performance of a
single thread and the aggregate throughput of 6 threads
all accessing the same hash table, to analyze the contribu-
tion of different optimizations. In this subsection, hash
tables are linked into a workload generator directly and
benchmarked on a local machine.

Space Efficiency and Construction Speed We insert
unique keys into empty cuckoo and chaining hash tables
using a single thread, until each hash table reaches its max-
imum capacity. The chaining hash table, as used in Mem-
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Hash table Size (MB) # keys
(million) Byte/key Load factor Construction rate

(million keys/sec)
Largest
bucket

Chaining 1280 100.66 13.33 − 14.38 13
Cuckoo 1path 1152 127.23 9.49 94.79% 6.19 4
Cuckoo 2path 1152 127.41 9.48 94.93% 7.43 4
Cuckoo 3path 1152 127.67 9.46 95.20% 7.29 4

Table 2: Comparison of space efficiency and construction speed of hash tables. Results in this table are inde-
pendent of the key-value size. Each data point is the average of 10 runs.

cached, stops insertion if 1.5n objects are inserted to a
table of n buckets to prevent imbalanced load across buck-
ets; our cuckoo hash table stops when a single Insert
fails to find an empty slot after 500 consecutive displace-
ments. We initialize both types of hash tables to have a
similar size (around 1.2 GB, including the space cost for
pointers)

Table 2 shows that the cuckoo hash table is much more
compact. Chaining requires 1280 MB to index 100.66
million items (i.e., 13.33 bytes per key); cuckoo hash
tables are both smaller in size (1152 MB) and contain at
least 20% more items, using no more than 10 bytes to
index each key. Both cuckoo and chaining hash tables
store only pointers to objects rather than the real key-value
data; the index size is reduced by 1/3. A smaller index
matters more for small key-value pairs.

Table 2 also compares cuckoo hash tables using differ-
ent numbers of cuckoo paths to search for empty slots
(Section 3.2.2). All of the cuckoo hash tables have high
occupancy (roughly 95%). While more cuckoo paths only
slightly improve the load factor, they boost construction
speed non-trivially. The table with 2-way search achieves
the highest construction rate (7.43 MOPS), as searching
on two cuckoo paths balances the chance to find an empty
slot vs. the resources required to keep track of all paths.

Chaining table construction is twice as fast as cuckoo
hashing, because each insertion requires modifying only
the head of the chain. Though fast, its most loaded bucket
contains 13 objects in a chain (the average bucket has 1.5
objects). In contrast, bucket size in a cuckoo hash table
is fixed (i.e., 4 slots), making it a better match for our
targeted read-intensive workloads.

Cuckoo Insert Although the amortized cost to insert one
key with cuckoo hashing is O(1), it requires more dis-
placements to find an empty slot when the table is more
occupied. We therefore measure the insertion cost—in
terms of both the number of displacements per insert and
the latency—to a hash table with x% of all slots filled,
and vary x from 0% to the maximum possible load fac-
tor. Using two cuckoo paths improves insertion latency,
but using more than that has diminishing or negative re-
turns. Figure 4 further shows the reciprocal throughput,
expressed as latency. When the table is 70% filled, a

10 ns

100 ns

1 us

0% 20% 40% 60% 80% 100%
In

se
rt 

la
te

nc
y

Load factor

43.2 ns

1 cuckoo path
2 cuckoo paths
3 cuckoo paths

Figure 4: Cuckoo insert, with different number of
parallel searches. Each data point is the average of
10 runs.

cuckoo insert can complete within 100 ns. At 95% oc-
cupancy, insert delay is 1.3 µs with a single cuckoo path,
and 0.84 µs using two.

Factor Analysis of Lookup Performance This experi-
ment investigates how much each optimization in Sec-
tion 3 contributes to the hash table. We break down the
performance gap between the basic chaining hash table
used by Memcached and the final optimistic cuckoo hash
table we proposed, and measure a set of hash tables—
starting from the basic chaining and adding optimizations
cumulatively as follows:

• Chaining is the default hash table of Memcached, serv-
ing as the baseline. A global lock is used to synchronize
multiple threads.
• +hugepage enables 2MB x86 hugepage support in

Linux to reduce TLB misses.
• +int keycmp replaces the default memcmp (used for

full key comparison) by casting each key into an integer
array and then comparing based on the integers.
• +bucket lock replaces the global lock by bucket-based

locks.
• cuckoo applies the naive cuckoo hashing to replace

chaining, without storing the tags in buckets and using
bucket-based locking to coordinate multiple threads.

8
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Figure 5: Contribution of optimizations to the hash table lookup performance. Optimizations are cumulative.
Each data point is the average of 10 runs.

• +tag stores the 1-Byte hash for each key to improve
cache-locality for both Insert and Lookup (Sec-
tion 3.1).
• +opt lock replaces the per-bucket locking scheme by

optimistic locking to ensure atomic displacement (Sec-
tion 3.2.1).

Single-thread lookup performance is shown in Fig-
ure 5a with lookups all positive or all negative. No lock is
used for this experiment. In general, combining all opti-
mizations improves performance by ∼ 2× compared to the
naive chaining in Memcached for positive lookups, and
by ∼ 5× for negative lookups. Enabling “hugepage” im-
proves the baseline performance slightly; while “int key-
cmp” can almost double the performance over “hugepage”
for both workloads. This is because our keys are relatively
small, so the startup overhead in the built-in memcmp be-
comes relatively large. Using cuckoo hashing without the
“tag” optimization reduces performance, because naive
cuckoo hashing requires more memory references to re-
trieve the keys in all 4 × 2 = 8 candidate locations on
each lookup (as described in Section 3.1). The “tag” opti-
mization therefore significantly improves the throughput
of read-only workloads (2× for positive lookups and 8×
for negative lookups), because it compares the 1-byte tag
first before fetching the real keys outside the table and
thus eliminates a large fraction of CPU cache misses.

Multi-thread lookup performance is shown in Fig-
ure 5b, measured by aggregating the throughput from
6 threads accessing the same hash table. Different from
the previous experiment, a global lock is used for the base-
line chaining (as in Memcached by default) and replaced
by per-bucket locking and finally optimistic locking for
the cuckoo hash table.

The performance gain (∼ 12× for positive and ∼ 25×
for negative lookups) of our proposed hashing scheme
over the default Memcached hash table is large. In Mem-
cached, all hash table operations are serialized by a global
lock, thus the basic chaining hash table in fact performs
worse than its single-thread throughput in Figure 5a. The
slight improvement (< 40%) from “hugepage” and “int
keycmp” indicates that most performance benefit is from
making the data structures concurrent. The “bucket lock”
optimization replaces the global lock in chaining hash
tables and thus significantly improves the performance
by 5× to 6× compared to “int keycmp”. Using the basic
concurrent cuckoo reduces throughput (due to unneces-
sary memory references), while the “tag” optimization
is again essential to boost the performance of cuckoo
hashing and outperform chaining with per-bucket locks.
Finally, the optimistic locking scheme further improves
the performance significantly.

Multi-core Scalability Figure 6 illustrates how the total
hash table throughput changes as more threads access

9
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Figure 6: Hash table throughput vs. number of
threads. Each data point is the average of 10 runs.

the same hash table. We evaluate read-only and 10%
write workloads. The throughput of the default hash ta-
ble does not scale for either workload, because all hash
table operations are serialized. Due to lock contention,
the throughput is actually lower than the single-thread
throughput without locks.

Using our proposed cuckoo hashing for the read-only
workload, the performance scales linearly to 6 threads
because each thread is pinned on a dedicated physical core
on the same 6-core CPU. The next 6 threads are pinned to
the other 6-core CPU in the same way. The slope of the
curve becomes lower due to cross-CPU memory traffic.
Threads after the first 12 are assigned to already-busy
cores, and thus performance does not further increase.

With 10% Insert, our cuckoo hashing reaches a peak
performance of 20 MOPS at 10 threads. Each Insert
requires a lock to be serialized, and after 10 threads the
lock contention becomes the bottleneck.

We further vary the fraction of insert queries in the
workload and measure the best performance achieved by
different hash tables. Figure 7 shows this best perfor-
mance and also the number of threads (between 1 and 16)
required to achieve this performance. In general, cuckoo
hash tables outperform chaining hash tables. When
more write traffic is generated, performance of cuckoo
hash tables declines because Inserts are serialized and
more Lookups happen concurrently. Consequently, the
best performance for 10% insert is achieved using only 9
threads; while with 100% lookup, it scales to 16 threads.
Whereas the best performance of chaining hash tables
(with either a global lock or per-bucket locks) keeps
roughly the same when the workloads become more write-
intensive.

5.3 Cache Microbenchmark
Workload We use YCSB [5] to generate 100 million
key-value queries, following a zipf distribution. Each key
is 16 Bytes and each value 32 Bytes. We evaluate caches
with four configurations:

• chaining+LRU: the default Memcached cache config-
uration, using chaining hash table to index keys and
LRU for replacement;
• cuckoo+LRU: keeping LRU, but replacing the hash

table by concurrent optimistic cuckoo hashing with all
optimizations proposed;
• chaining+CLOCK: an alternative baseline combining

optimized chaining with the CLOCK replacement algo-
rithm. Because CLOCK requires no serialization to up-
date, we also replace the global locking in the chaining
hash table with the per-bucket locks; we further include
our engineering optimizations such as “hugepage”, “int
keycmp”.
• cuckoo+CLOCK: the data structure of MemC3, using

cuckoo hashing to index keys and CLOCK for replace-
ment.

We vary the cache size from 64 MB to 10 GB. Note that
this cache size parameter does not count the space for
the hash table, only the space used to store key-value ob-
jects. All four types of caches are linked into a workload
generator and micro-benchmarked locally.

Cache Throughput Because each GET miss is followed
by a SET to the cache, to understand the cache perfor-
mance with heavier or lighter insertion load, we evaluate
two settings:

• a read-only workload on a “big” cache (i.e., 10 GB,
which is larger than the working set), which had no
cache misses or inserts and is the best case for perfor-
mance;
• a write-intensive workload on a “small” cache (i.e., 1

GB, which is ∼10% of the total working set) where
about 15% GETs miss the cache. Since each miss
triggers a SET in turn, a workload with 15% inserts is
worse than the typical real-world workload reported by
Facebook [3].

Figure 8a shows the results of benchmarking the “big
cache”. Though there are no inserts, the throughput does
not scale for the default cache (chaining+LRU), due to
lock contention on each LRU update (moving an object
to the head of the linked list). Replacing default chain-
ing with the concurrent cuckoo hash table improves the
peak throughput slightly. This suggests that only having
a concurrent hash table is not enough for high perfor-
mance. After replacing the global lock with bucket-based
locks and removing the LRU synchronization bottleneck
by using CLOCK, the chaining-based cache achieves 22

10
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MOPS at 12 threads, and drops quickly due to the CPU
overhead for lock contention after all 12 physical cores
are assigned. Our proposed cuckoo hash table combined
with CLOCK, however, scales to 30 MOPS at 16 threads.

Figure 8b shows that peak performance is achieved at
6 MOPS for the “small cache” by combining CLOCK
and cuckoo hashing. The throughput drop is because the
15% GET misses result in about 15% hash table inserts, so
throughput drops after 6 threads due to serialized inserts.

Space Efficiency Table 3 compares the maximum num-
ber of items (16-Byte key and 32-Byte value) a cache can
store given different cache sizes5. The default LRU with
chaining is the least memory efficient scheme. Replacing
chaining with cuckoo hashing improves the space utiliza-
tion slightly (7%), because one pointer (for hash table
chaining) is eliminated from each key-value object. Keep-
ing chaining but replacing LRU with CLOCK improves

5 The space to store the index hash tables is separate from the given
cache space in Table 3. We set the hash table capacity larger than the
maximum number of items that the cache space can possibly allocate.
If chaining is used, the chaining pointers (inside each key-value object)
are also allocated from the cache space.

space efficiency by 27% because two pointers (for LRU)
and one reference count are saved per object. Combin-
ing CLOCK with cuckoo increases the space efficiency
by 40% over the default. The space benefit arises from
eliminating three pointers and one reference count per
object.

Cache Miss Ratio Compared to the linked list based
approach in Memcached, CLOCK approximates LRU
eviction with much lower space overhead. This ex-
periment sends 100 million queries (95% GET and 5%
SET, in zipf distribution) to a cache with different con-
figurations, and measures the resulting cache miss ratios.
Note that each GET miss will trigger a retrieval to the
backend database system, therefore reducing the cache
miss ratio from 10% to 7% means a reduction of traffic
to the backend by 30%. Table 3 shows when the cache
size is smaller than 256 MB, the LRU-based cache pro-
vides a lower miss ratio than CLOCK. LRU with cuckoo
hashing improves upon LRU with chaining, because it
can store more items. In this experiment, 256 MB is
only about 2.6% of the 10 GB working set. Therefore,
when the cache size is very small, CLOCK—which is an

11
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cache type cache size
64 MB 128 MB 256 MB 512 MB 1 GB 2 GB

# items stored
(million)

chaining+LRU 0.60 1.20 2.40 4.79 9.59 19.17
cuckoo+LRU 0.65 1.29 2.58 5.16 10.32 20.65
chaining+CLOCK 0.76 1.53 3.05 6.10 12.20 24.41
cuckoo+CLOCK 0.84 1.68 3.35 6.71 13.42 26.84

cache miss ratio
95% GET, 5% SET

zipf distribution

chaining+LRU 36.34% 31.91% 27.27% 22.30% 16.80% 10.44%
cuckoo+LRU 35.87% 31.42% 26.76% 21.74% 16.16% 9.80%
chaining+CLOCK 37.07% 32.51% 27.63% 22.20% 15.96% 8.54%
cuckoo+CLOCK 36.46% 31.86% 26.92% 21.38% 14.68% 7.89%

Table 3: Comparison of four types of caches. Results in this table depend on the object size (16-Byte key and
32-Byte value used). Bold entries are the best in their columns. Each data point is the average of 10 runs.
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Figure 9: Full system throughput (over network) v.s.
number of server threads

approximation—has a higher chance of evicting popular
items than strict LRU. For larger caches, CLOCK with
cuckoo hashing outperforms the other two schemes be-
cause the extra space improves the hit ratio more than the
loss of precision decreases it.

5.4 Full System Performance

Workload This experiment uses the same workload as
in Section 5.3, with 95% GETs and 5% SETs generated
by YCSB with zipf distribution. MemC3 runs on the
same server as before, but the clients are 50 different
nodes connected by a 10GB Ethernet. The clients use lib-
memcached 1.0.7 [16] to communicate with our MemC3
server over the network. To amortize the network over-
head, we use multi-get supported by libmemcached [16]
by batching 100 GETs.

In this experiment, we compare four different systems:
original Memcached, optimized Memcached (with non-
algorithmic optimizations such as “hugepage”, “in key-
cmp” and tuned CPU affinity), optimized Memcached
with sharding (one core per Memcached instance) and

MemC3 with all optimizations enabled. Each system is
allocated with 1GB memory space (not including hash
table space).

Throughput Figure 9 shows the throughput as more
server threads are used. Overall, the maximum through-
put of MemC3 (4.4 MOPS) is almost 3× that of the orig-
inal Memcached (1.5 MOPS). The non-algorithmic op-
timizations improve throughput, but their contribution
is dwarfed by the algorithmic and data structure-based
improvements.

A surprising result is that today’s popular technique,
sharding, performs the worst in this experiment. This
occurs because the workload generated by YCSB is
heavy-tailed, and therefore imposes differing load on
the memcached instances. Those serving “hot” keys are
heavily loaded while the others are comparatively idle.
While the severity of this effect depends heavily upon
the workload distribution, it highlights an important bene-
fit of MemC3’s approach of sharing all data between all
threads.

6 Related Work

This section presents two categories of work most related
to MemC3: efforts to improve individual key-value stor-
age nodes in terms of throughput and space efficiency;
and the related work applying cuckoo hashing.

Flash-based key-value stores such as BufferHash [1],
FAWN-DS [2], SkimpyStash [8] and SILT [17] are op-
timized for I/O to external storage such as SSDs (e.g.,
by batching, or log-structuring small writes). Without
slow I/O, the optimization goals for MemC3 are saving
memory and eliminating synchronization. Previous work
in memory-based key-value stores [4, 20, 13] boost per-
formance on multi-core CPUs or GP-GPUs by sharding
data to dedicated cores to avoid synchronization. MemC3
instead targets read-mostly workloads and deliberately
avoids sharding to ensure high performance even for “hot”
keys. Similar to MemC3, Masstree [18] also applied ex-
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tensive optimizations for cache locality and optimistic
concurrency control, but used very different techniques
because it was a variation of B+-tree to support range
queries. RAMCloud [22] focused on fast data recon-
struction from on-disk replicas. In contrast, as a cache,
MemC3 specifically takes advantage of the transience of
the data it stores to improve space efficiency.

Cuckoo hashing [23] is an open-addressing hashing
scheme with high space efficiency that assigns multiple
candidate locations to each item and allows inserts to kick
existing items to their candidate locations. FlashStore [7]
applied cuckoo hashing by assigning each item 16 loca-
tions so that each lookup checks up to 16 locations, while
our scheme requires reading only 2 locations in the hash
table. We previously proposed partial key cuckoo hashing
in the SILT system [17] to achieve high occupancy with
only two hash functions, but our earlier algorithm limited
the maximum hash table size and was therefore unsuit-
able for large in-memory caches. Our improved algorithm
eliminates this limitation while retaining high memory ef-
ficiency. To make cuckoo operations concurrent, the prior
approach of Herlihy et al. [12] traded space for concur-
rency. In contrast, our optimistic locking scheme allows
concurrent readers without losing space efficiency.

7 Conclusion
MemC3 is an in-memory key-value store that is designed
to provide caching for read-mostly workloads. It is built
on carefully designed and engineered algorithms and data
structures with a set of architecture-aware and workload-
aware optimizations to achieve high concurrency, space-
efficiency and cache-locality. In particular, MemC3 uses
a new hashing scheme—optimistic cuckoo hashing—that
achieves over 90% space occupancy and allows concur-
rent read access without locking. MemC3 also employs
CLOCK-based cache management with only 1-bit per
entry to approximate LRU eviction. Compared to Mem-
cached, it reduces space overhead by more than 20 Bytes
per entry. Our evaluation shows the throughput of our
system is 3× higher than the original Memcached while
storing 30% more objects for small key-value pairs.
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A Correctness of the optimistic
locking on keys

This appendix examines the possible interleavings of
two threads in order to show that the optimistic locking
scheme correctly prevents Lookup from returning wrong
or corrupted data. Assume that threads T1 and T2 concur-
rently access the hash table. When both threads perform
Lookup, correctness is trivial. When both Insert, they
are serialized (Insert is guarded by a lock). The remain-
ing case occurs when T1 is Insert and T2 is Lookup.

During Insert, T1 may perform a sequence of dis-
placement operations where each displacement is pro-
ceeded and followed by incrementing the counter. With-
out loss of generality, assume T1 is displacing key1 to
a destination slot that originally hosts key0. Each slot
contains a tag and a pointer, as shown:

tag0 ptr0 

key0 tag1 ptr1 key1
lookup

T2
displaceT1

key0 differs from key1 because there are no two iden-
tical keys in the hash table, which is guaranteed because
every Insert effectively does a Lookup first. If T2
reads the same slot as T1 before T1 completes its update:

case1: T2 is looking for key0 . Because Insert
moves backwards along a cuckoo path (Section 3.2),
key0 must have been displaced to its other bucket (say
bucket i), thus
• if T2 has not checked bucket i, it will find key0 when

it proceeds to that bucket;
• if T2 checked bucket i and did not find key0 there, the

operation that moves key0 to bucket i must happen
after T2 reads bucket i. Therefore, T2 will see a change
in key0’s version counter and make a retry.

case2: T2 is looking for key1 . Since T1 will atomically
update key1’s version before and after the displacement,
no matter what T2 reads, it will detect the version change
and retry.

case3: T2 is looking for a key � key0 or key1 . No
matter what T2 sees in the slot, it will be rejected even-
tually, either by the tags or by the full key compari-
son following the pointers. This is because the pointer
field of this slot fetched by T2 is either ptr(key0) or
ptr(key1) rather than some corrupted pointer, ensured
by the atomic read/write for 64-bit aligned pointers on
64-bit machines.6

6quadword memory access aligned on a 64-bit boundary are atomic
on Pentium and newer CPUs [14]
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