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ABSTRACT
Filter data structures have been used ubiquitously since the 1970s
to answer approximate set-membership queries in various areas of
computer science and especially in database systems. Such filters
need to be allocated with a given capacity to provide a guarantee
over the false positive rate. In many applications, however, the
data size is not known in advance, requiring filters to dynamically
expand. This paper shows that all existing methods for expanding
filters exhibit at least one of the following flaws: (1) they entail
an expensive scan over the whole data set, (2) they take up an
exorbitant memory footprint, (3) their query/delete performance
deteriorates, or (4) their false positive rate skyrockets.

We introduce InfiniFilter, a new method for expanding filters
that addresses these problems. InfiniFilter is hash table that stores
a fingerprint for each entry. It doubles in size when it reaches
capacity, and it sacrifices one bit from each fingerprint to map it to
the expanded hash table. The core novelty is an entry format that
allows setting longer fingerprints to newer entries. This stabilizes
the false positive rate as the data grows. Moreover, InfiniFilter
provides stable insertion/query/delete performance as it comprises
a unified hash table. We implement InfiniFilter on top of Quotient
Filter, and we demonstrate experimentally that it offers superior
cost balances relative to all existing filter expansion methods.

1 INTRODUCTION
What is a Filter? A filter is a compact probabilistic data structure
that represents keys in a set. As it is smaller than the keys it repre-
sents, it can be stored at a higher level of the memory hierarchy (e.g.,
DRAM or SRAM), even if the keys themselves reside over a network
and/or on a disk drive due to their larger size. Filters answer queries
for whether a given key exists in a set, and some also support stor-
ing and retrieving a payload for each key. A filter cannot return
false negatives, but does return false positives with a probability
that depends on the amount of memory assigned to it. Thus, a filter
can quickly rule out the existence of a key without searching the
full data set. This boosts query performance by eliminating hops
across a network and/or expensive storage accesses.
Filters are Ubiquitous. Filters have been ubiquitously used in
various areas of computer science since the early 1970s. Database
management systems (e.g., Postgres, Cassandra [3], HBase [43])
and key-value stores (e.g., RocksDB [32], LevelDB [37]) use filters
to avoid searching for a particular row or column in storage. Hash
join algorithms employ filters to rule out non-matching entries for
a given key [6]. Filters are used in network applications to prevent
redundant communication [12], in security, e.g., to prevent denial of
service attacks or detect malicious URLs [35], and in search engines
[36] to rule out documents that do not match a given search term.
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Figure 1: Existing methods for expanding filters do not sup-
port stable query cost, stable false positive rate, and indefinite
expansion, all at the same time.
The Need for Filter Expandability. Many applications today
manage dynamic data that grows over time. Such applications need
to expand their filter/s as the size of the data that they represent
grows. For example, numerous modern storage engines employ a
filter to map the location of every data entry in storage, and they
need to expand these filters as more data is added [2, 16, 21, 22, 65].
In a hash join algorithm, if the initially allocated filter is too small
due to a faulty cardinality estimation, it is desirable to expand it. In
applications that use filters to represent nodes or potential attackers
in a network, it is often necessary to expand these filters as the
network evolves [70].
Existing Filter Expansion Methods are Insufficient. Bloom fil-
ters [9], the first invented and most commonly used type of filter, do
not support efficient expansion. Nevertheless, a few workarounds
are possible to accommodate dynamic data sets with them. One
approach is to scan the original data and rebuild a Bloom filter
with greater capacity from scratch. However, for many applications
the cost of scanning the whole data set can be performance pro-
hibitive. Another possibility is to pre-allocate a very large filter in
advance, but this wastes a lot of memory from the system’s get-go
and restricts the ultimate set size the filter can represent. Yet an-
other option is to create a chain (i.e., a linked list) of filters with
geometrically increasing capacities, and to add new filters to this
chain as the data grows. However, this increases query costs as all
filters in the chain potentially need to be searched.

Over the past decade, a new family of filters has emerged, in-
cluding quotient filter [7, 26], cuckoo filter [33], and others [31, 68].
These filters store a fingerprint (i.e., a hash digest) for each key
within a compact hash table. We refer to them collectively as tabu-
lar filters. Such filters provide limited support for expansion: it is
possible to double their capacity by sacrificing one bit from each fin-
gerprint to map it to one of two buckets in the expanded hash table.
We refer to this as the Fingerprint Sacrifice method. The problem is
that having all fingerprints shrink as the data grows increases the
false positive rate. Furthermore, the fingerprint bits eventually run
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out, at which point the filter becomes useless: it returns a positive
for every query, and it cannot continue expanding.

Figure 1 gives a taste of the problem by illustrating how the query
latency and false positive rate scale as we increase the data size with
the two current state-of-the-art filter expansion methods, applied
to a Quotient filter [7] with 16 bits per entry. The full experiment
is described in Section 5. As shown, Geometric Chaining exhibits
rapidly increasing query costs while Fingerprint Sacrifice exhibits a
skyrocketing false positive rate and is unable to expand indefinitely.
Research Challenge. We identify the following research problem:
Is it possible to expand a filter without rereading the original data
while maintaining (1) fast queries, insertions, updates, and deletes,
(2) a stable false positive rate, and (3) a modest memory footprint?
Insight: Variable-Length Fingerprints. This paper shows that
tabular filters can store fingerprints of different lengths for differ-
ent entries. This insight can be utilized to make the Fingerprint
Sacrifice method more efficient. Even though we must decrement
the fingerprint length of every existing entry to double the filter’s
capacity, newer entries inserted into the filter after expansion can
still be assigned longer fingerprints. This stabilizes the false positive
rate as the filter expands.
Our Solution. We introduce InfiniFilter, a novel method for ex-
panding filter data structures. InfiniFilter is a tabular filter that
stores a fingerprint along with a unary encoded age counter for
each entry. The age counter counts how many expansions ago a
given entry was inserted. During expansion, one bit from each fin-
gerprint is sacrificed to map the fingerprint to one of two buckets
in the doubled filter capacity. At the same time, the unary counter
for each entry is incremented. Hence, all entries stay uniformly
sized and perfectly aligned within the filter’s buckets.

Since InfiniFilter doubles its capacity during each expansion, half
the entries in the filter are recent, another quarter are slightly less
recent, and so on. More precisely, the fingerprint lengths follow
a geometric distribution so most fingerprints are long, and much
fewer are short. Having most fingerprints in the filter stay long
keeps the false positive rate much stabler than the Fingerprint Sac-
rifice method. Moreover, since this approach keeps entries inserted
across multiple expansions within a single filter, it keeps queries
faster than the Geometric Chaining method. Hence, InfiniFilter
provides fundamentally new and improved cost balances for the
filter expansion problem.
Contributions. In summary, our contributions are to:

(1) Show how to maintain variable-sized fingerprints for en-
tries with different ages within the same tabular filter.

(2) Show how to perform deletes by targeting the longest
matching fingerprint within a hash bucket.

(3) Show how queries to existing keys can be opportunistically
used to rejuvenate the fingerprints of older entries.

(4) Show how to combine InfiniFilter with chaining to support
indefinite expansion.

(5) Provide a theoretical worst-case analysis demonstrating
that InfiniFilter dominates existing expansion methods.

(6) Implement InfiniFilter on top of Quotient Filter and open-
source the code.

(7) Evaluate InfiniFilter against other expansion methods and
show that it achieves superior cost balances.

Query X

Insert X Insert Y

Query Z

1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Query Q
true  

positive
Negative false  

positive

Figure 2: A Bloom filter maps each key to several bits, setting
them to 1s. It returns a positive for a query if all its bits
corresponding to the key in question are set to 1s.

2 BACKGROUND
This section provides the necessary background on Bloom and
Quotient filters. Table 1 lists terms used to describe them.
Bloom Filters. A Bloom filter [9] consists of a bitmap initially set
to all zeros. A key is inserted by hashing it using 𝑘 hash functions
to 𝑘 random positions in the bitmap and setting all bits in these
positions to ones. A lookup involves hashing the key in question to
its 𝑘 positions. If at least one of the bit in these positions is set to
zero, the key could not have been inserted and so the filter returns
a negative answer. Otherwise the filter returns a positive answer.
Since the bits in question could have been coincidentally set to 1s
by other keys, however, there is a chance of a false positive. The
probability \ of a false positive is approximated by Equation 1,
where 𝑚 is the number of bits in the filter, 𝑛 is the number of
inserted keys, and 𝑘 is the number of hash functions used by the
Bloom filter. Figure 2 illustrates a Bloom filter with sixteen bits and
two hash functions.

\ ≈
(
1 − 𝑒−𝑘 ·

𝑛
𝑚

)𝑘
(1)

As more keys are inserted into a Bloom filter, the false positive
rate in Equation 1 increases as more of the bits in the filter get set to
1s. If too many keys are inserted, the Bloom filter becomes useless:
it reports a positive for any query, regardless of whether a key has
been inserted or not. Hence, a Bloom filter requires knowing the
data set size in advance when it is allocated to guarantee a given
false positive rate to the user.

Bloom filters do not support deletes. To see why, observe that
resetting bits from 1s to 0s to reflect a deletion of some key 𝑋 could
affect a bit that also corresponds to some other existing key 𝑌 . This
would lead to future false negatives when querying for key 𝑌 . False
negatives violate the semantic guarantees of a filter and cannot be
tolerated by most applications that filters are used for.

For similar reasons, Bloom filters cannot be expanded. Since a
Bloom filter does not retain information about which keys had set
off which bits, there is no way of remapping the bits corresponding
to each key to a Bloom filter with greater capacity without rereading
the original data.
Tabular Filters. Since the early 2010s, a new family of filters
emerged as an alternative to Bloom filters. These structures store
a fingerprint (i.e., a hash digest) for every key within a compact
hash table [14], and they typically differ in their collision reso-
lution strategy. Examples include Quotient Filter [7, 26], Cuckoo
Filter [33], and others [11, 31, 58, 68]. These new tabular filters offer
more promise concerning expandability. We focus on Quotient filter
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Figure 3: A Quotient filter stores a fingerprint for each key
in a hash table resolves collisions by organizing fingerprints
into runs and clusters. Fingerprints are illustrated in red.

because, as we will show, its collision resolution strategy is particu-
larly well-suited for InfiniFilter. We also discuss and evaluate other
types of filters in Sections 5 and 6.
Quotient Filter (QF). A QF [7, 26] is a hash table with 2𝑥 slots.
Each slot can store one fingerprint, and collisions are handled via
Robin Hood hashing [15]. The QF version employed in this paper
maps a given key 𝑦 to a canonical slot using the least significant 𝑥
bits of its hash ℎ(𝑦), and it derives a fingerprint for the key based
on the next 𝐹 bits of the key’s hash. If the canonical slot is empty,
the key’s fingerprint is stored there. If it is non-empty, however,
the fingerprint will be stored in some slot to the right. Fingerprints
belonging to the same canonical slot are stored along contiguous
slots in a so-called run. A cluster is a group of contiguous runs of
which the first run begins at its canonical slot and the subsequent
runs have been shifted to the right.

Figure 3 Part (A) illustrates a QF with eight slots and three keys
mapped to different canonical slots based on the least significant
three bits of their hashes (slot numbers are expressed in binary
throughout the paper). The rest of their hashes, marked in red, are
stored as fingerprints. Part (B) of Figure 3 shows how the filter’s
state changes after two more insertions into canonical Slot 011,
leading to hash collisions. The result is a cluster comprising two
runs between Slots 011 and 110. Note that across the paper, all
binary notations assume that more significant bits are to the left.
QF Metadata Flags. To mark the start and end of runs and clus-
ters, each slot includes three metadata flags. The is_occupied flag
indicates whether a given slot is a canonical slot for at least one
existing key. The is_shifted flag is set for a slot that contains a
fingerprint that had been shifted to the right from its canonical

term definition
𝑛 number of entries currently in the filter
𝑆 the initial capacity of the filter
𝑁 current filter size divided by its initial size (i.e., 𝑁 = 𝑛/𝑆)
𝑋 number of expansions since the start (i.e.,𝑋 = ⌈log2 (𝑁 )⌉)
𝑀 total memory used for the filter (bits / entry)
𝐹 initial fingerprint size when the filter is first allocated
h(...) hash function
𝑐 number of Basic InfiniFilters in the Chained InfiniFilter
\ false positive rate
𝛼 fullness/expansion threshold (0 < 𝛼 < 1)

Table 1: Terms used throughout the paper.

slot. The is_continuation flag indicates whether the slot contains a
continuation of a run that started to the left.

In Figure 3 Part (B), for example, Slot 011 only has the is_occupied
flag set to true because it stores a fingerprint for which Slot 011 is the
canonical slot. Slots 100 and 101 both have the is_continuation and
is_shifted flags set to true because they are a part of a run that starts
to the left (at Slot 011) but the fingerprints they contain are shifted
to the right due to collisions. Slot 100 also has the is_occupied
flag set to true because it is the canonical slot for a key that is
shifted to the right (to Slot 110). Slot 110 has the is_shifted flag set
to true because it belongs to a cluster starting to the left, yet its
is_continuation flag is set to false to mark the start of a new run
within this cluster.
QF Queries. A query begins at a given key’s canonical slot and
moves leftwards until finding the start of a cluster (i.e., a slot with
only the is_occupied flag set to true). It then traverses the cluster to
the right, keeping a running counter of the number of subsequent
runs we must skip. Each slot to the left of the canonical slot with
the is_occupied flags set to true indicates one additional run to be
skipped. This increments our running counter. On the other hand,
each slot with the is_continuation flag set to false indicates the
start of a new run. This decrements the running counter. When the
running counter’s value is zero, we have reached the target run.
The query then scans the run’s fingerprints and returns a positive
if there is at least one exact match.
QF Inserts. An insertion commences similarly to a query by first
finding the run to which the fingerprint should be inserted. The
fingerprint is added to this run by shifting all subsequent keys in
the cluster one slot to the right, and potentially adding new runs to
the cluster in this process by pushing them to the right from their
canonical slots.
QF Deletes. Unlike a Bloom filter, a QF supports deletes to keys
we know had previously been inserted. It executes a delete by
identifying a key’s run and removing from it a matching fingerprint.
It then shifts any subsequent key in the cluster one slot to the left,
potentially also splitting clusters by shifting some runs back to their
canonical slots. Figure 3 Part (C) illustrates a delete operation.
QF Iteration. A QF supports iteration over its fingerprints using
a linear left-to-right scan. For each fingerprint encountered along
the way, it is possible to infer and report its canonical slot using
the metadata flags.
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query/delete insert false positive
rate

fingerprint
bits / key

maximum
expansions

Linear Chaining [17, 41, 42] 𝑂 (𝑁 ) 𝑂 (1) 𝑂 (2−𝐹 · 𝑁 ) 𝐹 ∞
Geometric Chaining [1, 69, 71] 𝑂 (lg𝑁 ) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁 ) 𝐹 ∞
Geometric Chaining & Growing Memory [56] 𝑂 (lg𝑁 ) 𝑂 (1) 𝑂 (2−𝐹 ) 𝐹 +𝑂 (lg lg𝑁 ) ∞
Fingerprint Sacrifice [7, 72] 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 · 𝑁 ) 𝐹 −𝑂 (lg𝑁 ) 𝐹

Table 2: A comparison of different techniques for expanding a Filter. As shown, no existing method achieves perfect scalability
with data size for queries, inserts, deletes, the false positive rate and the memory footprint at the same time.

QF Allocation. If too many keys are inserted into a quotient fil-
ter and utilization increases beyond ≈ 90%, the average cluster
length starts growing rapidly until eventually, the performance of
queries becomes impractical. Hence, similarly to Bloom filters, a
quotient filter has to be allocated with a maximum data size in mind.
Throughout the paper, we let the parameter 𝛼 denote the fraction
at which point a Quotient filter becomes full.
Analysis. For a query to a non-existing key, the false positive
rate for a Quotient filter is known to be ≲ 2−𝐹 · 𝛼 . The reason
is that each canonical slot is associated with a run containing on
average 𝛼 fingerprints, each of which matches the search key with
probability 2−𝐹 . The overall memory footprint is𝑀 = 𝐹+3

𝛼 bits per
entry. This accounts for one fingerprint and three metadata bits per
slot, and the fact that a fraction 𝛼 of the slots are non-empty.

3 PROBLEM ANALYSIS
This section describes existing techniques for filter expansion and
analyzes them as they would apply to a Quotient Filter.
1. Full Reconstruction. The simplest method of expanding a fil-
ter is by scanning the full data set, rebuilding a filter with greater
capacity from scratch, and disposing of the original filter [20, 70].
The problem is that the original data often resides on a slower
storage medium (e.g., disk or SSD) and/or over a network. It can
therefore be expensive to fully scan. In some applications, data is
regularly scanned in the background (e.g., compaction operations
in LSM-trees [3, 32, 55]). This provides an opportunity for full filter
reconstruction without additional overheads [19]. However, for
applications where data is not regularly scanned, full reconstruc-
tion can be prohibitively disruptive. Hence, this paper focuses on
expansion methods that do not require re-scanning the data at all.
2. Pre-Allocation. A common approach for circumventing the
challenge of filter expansion is to pre-allocate a large static filter in
advance. For example, the Pliops data processor allocates a large
static filter occupying ≈100GB when the system is deployed to map
from data entries to their location in storage [21]. However, this
method requires a lot of memory from the system’s get-go, even
while the data set is still small. Moreover, this method restricts the
maximum number of entries that can ultimately be inserted into
the data set. In this paper, we rather focus on methods that enable
gradual expansion and do not restrict the maximum data size.
3. Linear Chaining. Several papers propose to accommodate data
growth by creating a chain of similarly-sized filters, each with the
same false positive rate [17, 41, 42]. New insertions are made to
the last filter in the chain, and a new filter is allocated when the

filter 1 filter 2 filter 3 …(A) Linear  
Chaining:

(B) Geometric  
Chaining

filter 1 filter 2 …filter 3

Figure 4: Linear expansion involves allocating linearly more
filters as the data size grows, while geometric expansion
entails allocating exponentially larger ones.

last filter reaches capacity. In practice, this is the method used in
the FIFO compaction policy within RocksDB [32]. We illustrate
this method in Figure 4 Part (A). The downside is that the costs of
queries and deletes increase linearly with data size as possibly all
filters must be searched for a matching fingerprint. For the same
reason, the false positive rate is \ ≲ 2−𝐹 · 𝛼 · 𝑁 , while the memory
footprint is𝑀 = 𝐹+3

𝛼 bits per entry as with a regular quotient filter.
We summarize these properties in Row 1 of Table 2.
4. Geometric Chaining. Other papers propose creating a chain
of geometrically larger filters as the data expands [1, 56, 69, 71].
New insertions are made to the largest filter, and a new filter with
doubled capacity is appended to the chain when the last filter is
at capacity. We illustrate this approach in Figure 4 Part (B). This
approach entails logarithmic query/delete overheads as the number
of filters in the chain is logarithmic with data size. Moreover, the
false positive rate is \ ≲ 2−𝐹 · 𝛼 · (log2 (𝑁 ) + 1), and the memory
footprint is𝑀 = 𝐹+3

𝛼 bits per entry. We summarize these properties
in Row 2 of Table 2. Note that Geometric Chaining dominates Linear
Chaining across all the different cost metrics.

To fully stabilize the overall false positive rate, it is possible to
assign lower false positive rates to larger filters along the chain [1,
56, 69]. The best known method is using the reciprocals of squares:
the false positive rate assigned to the 𝑖th filter along the chain is
smaller by a factor of 𝑖−2 than the false positive rate assigned to
the (𝑖 − 1)th filter [56]. This causes the sum of false positive rates
across all filters to converge to \ ≲ 2−𝐹 · 𝛼 · 𝜋2

6 (as per the famous
Basel Problem solved by Euler). The cost of this method is a higher
memory footprint:𝑀 ≲ 1

𝛼 · (𝐹 + 3 + 2 · log2 (log2 (𝑁 ) + 1)) bits per
fingerprint. We summarize these properties in Row 3 of Table 2
5. Fingerprint Sacrifice. Unlike Bloom filters, tabular filters such
as Quotient Filters lend themselves to yet another form of expan-
sion coined Fingerprint Sacrifice. The idea is to derive the original
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Figure 5: Quotient Filter can be expanded by sacrificing one
bit from each fingerprint to map it to an expanded hash table.
We use black and red in the figure to illustrate slot addresses
and fingerprints, respectively.

hash of every entry by concatenating its slot offset with its finger-
print. We can then employ this full hash to reinsert the key into a
new tabular filter with doubled capacity [7]. Specifically, an entry
belonging to slot 𝑥 in the older filter is placed in the new filter’s
slot 𝑥 if its least significant fingerprint bit is zero. Otherwise, it is
placed at slot 𝑥 +𝑞/2 of the new filter, where 𝑞 is the number of slots
in the new filter. Figure 5 shows an expansion example from four
to eight slots using a Quotient Filter. Note that in the older filter,
there is a collision at Slot 1 leading to a run occupying two slots.
This collision is resolved after expansion as the least significant bits
of the fingerprints of these two entries are different. These entries
are therefore mapped to different slots in the newer filter.

The problem with this approach is that it transfers one bit from
each entry’s fingerprint to become a part of its slot address during an
expansion. Hence, this method does not support infinite expansions:
the fingerprints run out of bits after 𝐹 expansions, where 𝐹 is the
initial fingerprint size. Furthermore, sacrificing one bit from each
fingerprint during each expansion causes the false positive rate to
double every time the data size doubles. Hence, the false positive
rate is ≲ 2−𝐹 · 𝛼 · 𝑁 , while the memory requirement is 𝑀 = 1

𝛼 ·
(𝐹 − ⌈log2 (𝑁 )⌉) bits per entry. As this method reinserts all existing
entries to a new filter whenever the data size doubles, the amortized
insertion cost is ≈ 2 ∈ 𝑂 (1). Hence, it exhibits approximately half
of the maximum throughput of the Pre-Allocation or Chaining
methods. We summarize these properties in Row 4 of Table 2.
Summary. Geometric Chaining offers indefinite expansion and
a superior false positive rate relative to the Fingerprint Sacrifice
method. On the other hand, the fingerprint sacrifice method of-
fers faster query/delete operations. The next section introduces
InfiniFilter to combine the best of both worlds. Section 6 includes
further details on lower bounds and theoretical algorithms for the
filter expansion problem.

4 INFINIFILTER
InfiniFilter is a new method for expanding set-membership filters.
Similarly to the Bit Sacrifice method, InfiniFilter doubles in size
when it reaches a certain capacity threshold, and it sacrifices a
bit from each fingerprint to map it to the expanded version. The
core innovation is a new entry format that allows setting longer
fingerprints to newer entries. This allows InfiniFilter to expand
while maintaining stable operation costs, memory footprint, and
false positive rate.

counter fingerprint

010110 110001 101001

1 0 0 1 0 0 0 1 1

011011

1 0 0

00 01 10 11

h(Z)=0000101 h(Y)=1100101h(Q)=1011000

run

h(V)=1101111

Figure 6: An example InfiniFilter with four slots. For each
data entry, there is a fixed-length fingerprint in the filter,
which consists of a unary age counter and a signature.

Section 4.1 describes the Basic InfiniFilter, which supports a
finite number of efficient expansions. Section 4.2 shows how to
support infinite expansions by chaining multiple basic InfiniFilters
together. Section 4.3 shows how to trade slightly more memory to
fully stabilize the false positive rate in the worst case.

We build InfiniFilter on top of Quotient Filter. We chose Quotient
filter because it resolves collisions without relying on entries’ fin-
gerprints (i.e., in contrast to, say, Cuckoo or Morton filters [11, 33]).
Hence, it is easy to extract the hash associated with an entry and
use it to map the entry to an expanded version of the filter, not least
as fingerprints change in length across expansions.

4.1 The Basic InfiniFilter
The Basic InfiniFilter is initialized as a quotient filter with 𝑆 slots (𝑆
is a power of 2) and a fingerprint size of 𝐹 bits. Figure 6 illustrates
a basic InfiniFilter with four slots. The first three bits in each slot
are the usual is_occupied, is_shifted, and is_continuation flags of a
quotient filter used to resolve hash collisions. The remaining bits
are divided into two fields. The first is a unary age counter, which
counts how many expansions ago the given entry was inserted.
The second is the fingerprint. Together, the counter and fingerprint
occupy 𝐹 + 1 bits. Hence, the longer the unary counter of a given
entry is, the shorter the fingerprint is.

Figure 6 shows an example of an InfiniFilter with 4 slots and an
initial fingerprint length of 5 bits. There are four entries across four
slots. The full hashes for the original keys, Q, Y, Z, and V are given
above the cell that contains a fingerprint for that key. As shown, the
four entries at Slots 00 to 11 were inserted zero, two, one, and zero
expansions ago, respectively, as indicated by their age counters (i.e.,
0, 110, 10, and 0, respectively).
Insertion. A new entry is inserted with a fingerprint comprising 𝐹
bits and an age counter initialized to 0 to indicate that no expansions
have taken place since the entry was inserted. The rest of the
insertion procedure is identical to that of a regular quotient filter.
Queries. A query commences as with a regular quotient filter
by first identifying the run belonging to the target slot. For each
entry in this run, the query parses the unary counter, which is
self-delimiting, to infer how long the fingerprint is. It then checks
whether this fingerprint matches the least significant bits of the
fingerprint of the key in question. It returns a positive if so, and it
continues scanning the run otherwise. If it finishes scanning the
run without a match, it returns a negative.

In Figure 6, for example, consider a query to key 𝑌 , which maps
to a run comprising Slots 01 and 10. While the fingerprints at these
slots have different lengths, they both match the fingerprint of key
𝑌 causing the filter to return a positive.
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Figure 7: InfiniFilter doubles in capacity by incrementing
every entry’s age counter and transferring the least signif-
icant bit of its fingerprint as the most significant bit of its
slot address. We use black, blue, and red to illustrate slot
addresses, unary age counters, and fingerprints, respectively.

Deletes. Similarly to a regular Quotient Filter, InfiniFilter supports
deletes, though it requires being more careful to maintain correct
semantics. The reason is that fingerprints within a run can have
different lengths, and removing a shorter (lower-resolution) finger-
print associated with the wrong key could lead to false negatives.

For instance, suppose the user requests to delete key𝑌 in Figure 6.
The hash of key 𝑌 matches both fingerprints at this run, so there
is a question of which to remove. If we delete the shorter one (i.e.,
001), we would get a false negative later when querying for key 𝑍 .

To prevent false negatives, InfiniFilter always deletes the longest
matching fingerprint (i.e., 1001 in the above example). This guaran-
tees that queries to other keys will not result in false negatives as
they will still match the shorter remaining fingerprint.
Expansion.When the fraction of occupied cells in the filter reaches
a threshold of 𝛼 , an expansion process begins. This process first
allocates a new InfiniFilter with double the capacity of the existing
one. It then iterates over the smaller InfiniFilter from left to right.
For each entry, it concatenates its slot address with its fingerprint
to derive its original hash, and it uses this hash to reinsert the
entry into the new InfiniFilter. Specifically, an entry from Slot 𝑖 in
the former InfiniFilter is placed either at Slot 𝑖 or at Slot 𝑖 + 𝑞/2 of
the newer InfiniFilter depending on whether its least significant
fingerprint bit is 0 or 1, where 𝑞 is the number of slots in the new
InfiniFilter. The new fingerprint for each entry does not include the
former least significant bit as the information contained in this bit
is now implicit in the entry’s new slot address. Finally, the former
InfiniFilter is de-allocated.

Figure 7 depicts the expansion example from Figure 5 reapplied
to an InfiniFilter. For each entry, the age counter is incremented
while the least significant bit of its fingerprint becomes the most
significant bit of its slot address. Hence, every entry still occupies
the same number of bits after expansion. Crucially, even though
entries from before the expansion now have shorter fingerprints,
newer entries inserted after the expansion are still assigned 𝐹 bits,
the maximum fingerprint length.
ExpansionThreshold.The expansion threshold𝛼 controls a trade-
off. The higher it is, the better the filter’s memory utilization is as
more of the filter is full. On the other hand, queries and inserts
become slower as clusters become longer on average. Our design
employs a threshold of 80% by default as a reasonable balance.
Insertion Cost. InfiniFilter reinserts all existing entries into a
new Quotient filter with double the capacity of the existing one

1101

1 0 0 0 1 1

1011
Before: After:

Query for key Y, h(Y)=…01100

rejuvenate

1010

0 1 1 1 0 0 0 1 1 0 1 1

1100 00111000
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matching  
fingerprint

longest  
matching  
fingerprint

non- 
matching  
fingerprint

00 01 10 00 01 10

Figure 8: After a query to an existing key, it is possible to
rejuvenate the longest matching fingerprint in the target run
to lower the false positive rate.

whenever the data size doubles. Hence, the amortized insertion cost
is ≈ 2 ∈ 𝑂 (1), the same as for the Fingerprint Sacrifice method.
Expansion Limit. After 𝐹 expansions, the oldest entries in the
filter, which were inserted before the first expansion took place,
run out of fingerprint bits. At this point, we can no longer employ
parts of their fingerprint to map them to a larger filter with greater
capacity, so the filter cannot continue expanding. Hence, the basic
InfiniFilter accommodates at most 𝐹 expansions, leading to a maxi-
mum data size of 𝑆 · 2𝐹 entries. Section 4.2 shows how to overcome
this limitation to continue expanding indefinitely.
Age Distribution. Since the filter doubles in size every time it
expands, the distribution of age counters is geometric: there are
generally twice as many entries with age 𝑖 + 1 as there are of age 𝑖 .
Equation 2 approximates the fraction of entries in the filter with
age 𝑖 after 𝑋 expansions (i.e., 0 ≤ 𝑖 ≤ 𝑋 ).

𝑓 (𝑖) ≲ 2−𝑖 0 ≤ 𝑖 ≤ 𝑋 (2)

False Positive Rate. Entries of age 𝑖 have a fingerprint size of 𝐹 − 𝑖
bits and thus a false positive probability of 2−𝐹+𝑖 · 𝛼 . Equation 3
derives the weighted average false positive rate by multiplying this
expression with the age distribution in Equation 2.

\ =

𝑋∑︁
𝑖=0

𝑓 (𝑖) · 2−𝐹+𝑖 · 𝛼 ≲ (𝑋 + 1) · 2−𝐹 · 𝛼
≤ (𝐹 + 1) · 2−𝐹 · 𝛼 (3)

As shown in Equation 3, the false positive rate increases linearly
with the number of expansions𝑋 . The intuition is that even though
there are exponentially fewer older entries in the filter, these en-
tries exhibit exponentially higher false positive rates. Hence, each
generation of entries contributes equally to the false positive rate.
Since the basic InfiniFilter supports up to 𝐹 expansions, the false
positive rate reaches a maximum after 𝐹 expansions.
Memory. Each slot comprises 𝐹 + 1 bits for the unary counter and
fingerprint plus the three usual metadata bits of a standard quotient
filter. We divide this by the expansion threshold 𝛼 in Equation 4
to define𝑀 as the number of bits per entry at the moment before
expansion takes place.

𝑀 = (𝐹+4)/𝛼 (4)

Rejuvenation Operations. InfiniFilter allows rejuvenating the
fingerprints of older entries to improve the false positive rate. The
insight is that a query to the filter that returns a positive is typically
followed by a lookup to storage to retrieve the original key-value
pair. If the key is found, we can rehash it to lengthen its fingerprint.
To prevent false negatives, however, we must lengthen the longest
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Figure 9: InfiniFilter contracts by halving its number of slots
and transferring the most significant bit of each entry’s slot
address to the least significant bit of its fingerprint.
matching fingerprint within a run, as a shorter matching fingerprint
may correspond to a different entry and thus lead to false negatives.

Figure 8 illustrates a query for key𝑌 targeting a run consisting of
three slots. The fingerprints at slots 01 and 10 match the fingerprint,
so the filter returns a positive. We assume the original key 𝑌 is then
retrieved from storage. This allows us to rehash it and lengthen the
longest matching fingerprint (at Slot 10) to 𝐹 bits. Future queries
arriving at this run will, on average, exhibit fewer false positives.
Batch Rejuvenation. In many storage applications, data is oc-
casionally read and reorganized in large batches. This includes
garbage-collection in log-structured file systems [61], compaction in
log-structuredmerge-trees [55], and defragmentation in B-trees [39].
Such processes also serve as opportunities to rejuvenate the fin-
gerprints of older entries. For each entry read from storage during
such an operation, we can derive its original hash and rejuvenate
the longest matching fingerprint within the corresponding run.
Contraction. InfiniFilter contracts if many deletes occur and uti-
lization significantly decreases. The contraction threshold is 𝛼/4 to
ensure that the first delete operation after expansion would not lead
to an immediate subsequent contraction. When utilization drops
to 𝛼/4, we allocate a new InfiniFilter with half as many slots and
iterate over the existing InfiniFilter’s entries. An entry from Slot 𝑖 or
Slot 𝑖 + 𝑞/2 of the larger InfiniFilter is placed at Slot 𝑖 of the smaller
one, and the most significant bit of its slot address is appended
as the least significant bit of its fingerprint. To maintain the same
slot width, every entry whose age counter is greater than zero is
decremented. Otherwise, the most significant bit of its fingerprint
is truncated. Figure 9 depicts an example where a delete operation
triggers a contraction from eight to four slots.
Summary.We summarize the properties of the basic InfiniFilter
in Row 1 of Table 3. As shown, it matches the Fingerprint Sacrifice
method in Table 2 in terms of themaximumnumber of supported ex-
pansions and in terms of the performance of queries/inserts/deletes.
At the same time, it scales the false positive rate logarithmically
rather than linearly, a tremendous improvement. In the next two
sections, we introduce two more variants of InfiniFilter that support
infinite expansions and better scale the false positive rate.

4.2 Infinite Expansions via Chaining
The basic InfiniFilter from the previous section supports a finite
number of expansions. The reason is that, eventually, the oldest
entries in the filter run out of fingerprint bits. We refer to such
entries as void entries. The problem with void entries is that they
have no more spare fingerprint bits that can be sacrificed to map
them to an expanded filter. We now show how to overcome this
limitation by organizing void entries along a chain of InfiniFilters.

Active InfiniFilter Secondary InfiniFilter

Void entries

Chain

Inserts

Expand Expand

Append

Figure 10: TheChained InfiniFilter supports indefinite expan-
sion using a short chain of basic InfiniFilters. New insertions
go into the Active InfiniFilter.

The Active InfiniFilter. Figure 10 illustrates the chaining architec-
ture, which consists of multiple basic InfiniFilters as building blocks.
While these InfiniFilters have different numbers of slots, they each
have the same slot width. Insertions are made into the so-called
Active InfiniFilter. Once it reaches the expansion threshold 𝛼 , the
Active InfiniFilter expands using the same process as described in
Section 4.1. During this expansion process, as we iterate over the
Active InfiniFilter, we migrate every void entry that we encounter
into a so-called Secondary InfiniFilter.
The Secondary InfiniFilter. The Secondary InfiniFilter is smaller
than the Active InfiniFilter by a multiplicative factor of 2𝐹+1 slots.
For every void entry migrated from the Active InfiniFilter into the
Secondary InfiniFilter, we employ the most significant 𝐹 bits of its
canonical slot address in the Active InfiniFilter as an 𝐹 bit finger-
print to be inserted into the Secondary InfiniFilter. The remaining
lesser significant bits of the entry’s canonical slot address in the
Active InfiniFilter are assigned as the entry’s canonical slot address
in the Secondary Infinifilter.
The Chain. Just before the Active InfiniFilter expands, we expand
the Secondary InfiniFilter (also using the same expansion algorithm
from Section 4.1). Eventually, the oldest entries in the Secondary
InfiniFilter become void. At this point, the Secondary InfiniFilter
becomes static and appended to a linked list of InfiniFilters, referred
to as the chain. We then allocate a new empty Secondary InfiniFilter.
Example. Figure 11 illustrates an example of four expansions. The
example commences with an Active InfiniFilter with four slots and
2-bit fingerprints. There is a void entry at Slot 11 that belongs to a
run starting at Canonical Slot 10. As the first expansion begins, a
new Secondary InfiniFilter is allocated with one slot. We migrate
the void entry to the Secondary InfiniFilter during the expansion
and employ its former canonical slot address as its fingerprint.

In Step 2, we expand the Secondary InfiniFilter and map its
only entry to Canonical Slot 0 based on the most significant bit
of its fingerprint. Then, as we expand the Active InfiniFilter, we
encounter a void entry in Slot 110. Based on this slot address, we
migrate it with fingerprint 11 to Slot 0 of the Secondary InfiniFilter.
There are now two entries in the Secondary InfiniFilter mapped to
canonical slot 0. The mechanics of the underlying quotient filter
resolve this hash collusion by storing these entries as a run starting
at Slot 0 and comprising two slots.

In Step 3, as in Step 2, we first expand the Secondary InfiniFilter.
We then expand the Active InfiniFilters while migrating all void
entries into the Secondary InfiniFilter. At this point, the oldest
entries in the Secondary InfiniFilter become void, so we seal the
Secondary InfiniFilter and append it to the chain. We then allocate
a new empty Secondary InfiniFilter as shown in Step 4.
Number of InfiniFilters.After the initial 𝐹 expansions, the Active
InfiniFilter and any InfiniFilter along the chain contain entries
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InfiniFilter (IF) type query / delete insert false positive
rate

fingerprint bits / en-
try

max. expansions

Basic IF 𝑂 (1) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁 ) 𝐹 𝐹

Chained IF 𝑂 ( lg𝑁
𝐹

) 𝑂 (1) 𝑂 (2−𝐹 · lg𝑁 ) 𝐹 ∞
Chained IF & Growing Fingerprints 𝑂 ( lg𝑁

𝐹+lg lg𝑁 ) 𝑂 (1) 𝑂 (2−𝐹 ) 𝐹 +𝑂 (lg lg𝑁 ) ∞
Table 3: The different variants of InfiniFilter offer new and superior cost properties for the filter expansion problem.
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Figure 11: An example showing themigration of entries from
the Active into the Secondary InfiniFilter across expansions.

inserted from across 𝐹 + 1 consecutive expansions. The number of
expansions 𝑋 since initialization is ⌈log2 (𝑁 )⌉. The total number of
InfiniFilters is therefore 𝑐 = ⌈log2 (𝑁 )/(𝐹+1)⌉.
Queries. A query first searches the Active InfiniFilter, then the
Secondary InfiniFilter, and then the chain from front to back. As
soon as it finds a matching fingerprint, it terminates and returns a
positive to the user. If it finishes traversing all InfiniFilters with no
match, it returns a negative. Theworst-case query cost is𝑂 (lg(𝑁 )/𝐹 )
memory accesses. However, since most of the entries are in the Ac-
tive InfiniFilter, most positive queries finish after just one memory
access (to the Active InfiniFilter).

Note that most often, with an initial fingerprint size of, say,
𝐹 = 10 bits per entry, the Active and Secondary InfiniFilter will
support 20 expansions before the chain becomes non-empty. This
implies increasing the initial data size by a factor of ≈ 220, which
is vast. Hence, while the chain is a construction used to guarantee
indefinite expansion, it will typically be empty and not influence
performance. So in most cases, the chained InfiniFilter only requires
two or less cache misses per query, one to the Active InfiniFilter
and one to the Secondary InfiniFilter.
Deletes. In Section 4.1, we saw that a delete operation has to remove
the entry with the longest matching fingerprint from a run to
prevent future false negatives. This principle also holds for the
chained InfiniFilter. If we delete a matching entry 𝑌 in an older
InfiniFilter while there is an entry 𝑍 with a matching fingerprint
in a newer InfiniFilter, this could result in future false negatives.
This could happen if the entry 𝑌 corresponds to a different entry
for which the hash is different than entry 𝑍 ’s hash only along more
significant bits that are not stored as a part of entry 𝑌 ’s fingerprint.

To prevent false negatives, we traverse the different InfiniFilters
from largest to smallest. For each, we apply the delete procedure
described in Section 4.1. This approach removes the entry with the
longest matching hash across all InfiniFilters.

Similarly to queries, the worst-case delete cost is 𝑂 (lg(𝑁 )/𝐹 )
memory accesses. Since most of the entries are in the Active In-
finiFilter, however, a delete is also likely to finish after just one
memory access (to the Active InfiniFilter). If a filter in the Chain
runs out of entries due to deletes, it is de-allocated.
False Positive Rate. When querying for a non-existing entry,
a false positive can occur in any of the InfiniFilters. As we saw
in Section 4.1, the false positive rate of a basic InfiniFilter that
contains entries inserted from across 𝑘 expansions is worst-case
(𝑘 + 1) · 2−𝐹 · 𝛼 . We have 𝑐 = ⌈log2 (𝑁 )/(𝐹+1)⌉ many InfiniFilters.
All of them except the Secondary InfiniFilter contain entries from
across 𝐹 + 1 expansions, while the Secondary InfiniFilter contains
entries from across 𝑋 − (𝑐 − 1) (𝐹 + 1) expansions. The overall false
positive rate is hence summarized in Equation 5 and simplified into
Equation 6. As shown, the false positive rate is logarithmic with
the data size1.

\ = (𝑐 − 1) · (𝐹 + 1) · 2−𝐹 · 𝛼 + (𝑋 − 𝑐 + 1) · 2−𝐹 · 𝛼 (5)

≤ ⌈log2 (𝑁 ) + 1⌉ · 2−𝐹 · 𝛼 (6)

Rejuvenation Operations. The Chained InfiniFilter also supports
rejuvenation operations to lengthen the fingerprints of older entries
after a query to an existing entry. If the true positive for this entry
occurs in the Active InfiniFilter, the rejuvenation process is identical
to the one described in Section 4.1. However, the true positive could
also occur in the Secondary InfiniFilter or in one of the InfiniFilters
in the chain. In this case, after we retrieve the target key from
storage, we rehash the key, delete the longest matching fingerprint
from the filter where the true positive occurred, and reinsert the
lengthened fingerprint into the Active infiniFilter. If a filter in the
Chain empties out due to rejuvenation operations, it is de-allocated.
Summary. The Chained InfiniFilter supports a logarithmic false
positive rate and infinite expansions. Hence, it dominates the Fin-
gerprint Sacrifice method, which supports only 𝐹 expansions and
exhibits a linear false positive rate.

Moreover, the Chained InfiniFilter improves query/delete costs
relative to Geometric Chaining by a significant factor of 𝐹 (i.e.,
𝑂 (lg𝑁/𝐹 ) vs. 𝑂 (lg𝑁 )). The trade-off is that InfiniFilter’s periodic
expansions can slow down insertion throughput by a factor of up to
≈ 2 relative to Geometric Chaining. Nevertheless, assuming a typi-
cal assignment of, say, 10 to 𝐹 , an x10 improvement in query/delete
throughput is worth an x2 slowdown in insertion throughput for a
1In fact, it is possible to attain a slightly tighter yet more complicated false positive
rate approximation of (log2 (𝑁 ) + 1) · 2−𝐹 · 𝛼 · 1

2−2− log2 (𝑁 ) .
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Figure 12: InfiniFilter can stabilize the false positive rate by
increasing fingerprint sizes for newer entries while adding
to the unary counters of older entries as padding.
wide spectrum of applications. In terms of overall system through-
put, this trade-off is beneficial whenever queries constitute between
10% to 100% of the workload relative to insertions. Such workloads
characterize all the default workloads in YCSB [18] and many appli-
cations in practice (e.g., HTAP [50, 64] and Social Graphs [5, 28]).
Moreover, in many applications (e.g., storage engines such as HBase
[43], Cassandra [3], RocksDB [32], etc.) filters are queried on the
critical path of performance and directly impact the latency experi-
enced by users. In contrast, new data is first buffered and inserted
into a filter in the background, possibly during idle time, so insertion
performance can be less critical to optimize for users’ experience.

4.3 Stabilizing the False Positive Rate
The Chained InfiniFilter so far offers a logarithmic false positive rate,
and rejuvenation operations can be employed to opportunistically
decrease the false positive rate when users query for existing keys.
However, the effectiveness of rejuvenation operations depends on
the query workload. If only a small fraction of the existing keys are
queried for, most fingerprints will not be touched by queries and
thereby get rejuvenated. This section shows how to obtain better
worst-case guarantees for the false positive rate in exchange for
slightly more memory, regardless of the query workload.

The technique we employ is to increase the slot width of the
Active InfiniFilter as the data grows to allow storing even longer
fingerprints for newer entries. By gradually increasing the average
fingerprint length as a function of the data size, the longer finger-
prints of newer entries counter-balance the effect of the shortening
fingerprints of older entries and guarantee a lower and more stable
false positive rate overall.
Fingerprint Growth. Our goal is to assign longer fingerprints
to newer entries such that the false positive rate across the filter
as a whole converges to a constant with respect to the number of
expansions that have taken place. At the same time, wewould like to
grow the fingerprints at a slow rate to prevent the memory footprint
from significantly increasing over time. Inspired by [56], we strike
this balance using the reciprocal of square numbers, which produce
a convergent series (

∑∞
𝑖=0 𝑖

−2 = 𝜋2/6). We use this series to decrease
the target false positive rate by a factor of (𝑋 + 1)−2 for entries
inserted after the 𝑋 th expansion (belonging to Generation 𝑋 ). To
do so, Equation 7 gives the fingerprint length assigned to entries
inserted after the 𝑋 th expansion.

ℓ (𝑋 ) = 𝐹 + ⌈2 · log2 (𝑋 + 1)⌉ (7)
As this approach entails increasing the slot width, we increase

the unary code of older entries to provide the necessary padding in
each slot, as shown in Figure 12.
Memory Footprint. The slot size is given in Equation 8. It is
derived by considering that the number of expansions𝑋 is log2 (𝑁 ).

Furthermore, one bit is needed as a unary counter, three bits are
needed for a quotient filter to resolve collisions, and only a fraction
of up to 𝛼 of the filter’s slots are used when at full capacity.

𝑀 =
4 + 𝐹 + ⌈2 · log2 (log2 (𝑁 ) + 1)⌉

𝛼
(8)

Fingerprint Size Distribution.We now turn to derive the false
positive rate. To do so, we first reason about the lengths of different
fingerprints within an individual InfiniFilter along the chain. Let us
consider a filter whose oldest fingerprints were created in genera-
tion 𝑡 (after the 𝑡 th expansion). Such a filter stores entries inserted
from across ℓ (𝑡) consecutive generations of entries, as after ℓ (𝑡)
expansions the oldest entries become void. For such an InfiniFil-
ter, entries inserted at generation 𝑡 + 𝑖 will have had a fingerprint
of length ℓ (𝑡 + 𝑖) when they were first inserted. However, by the
time this InfiniFilter is appended to the chain, ℓ (𝑡) − 𝑖 additional
expansions must have taken place, and so entries of this generation
must have lost ℓ (𝑡) − 𝑖 bits of their original fingerprints. Hence,
Equation 9 derives the fingerprint lengths of entries belonging to
Generation 𝑡 + 𝑖 for an InfiniFilter created at Generation 𝑡 .

𝐹𝑃𝑡 (𝑖) = ℓ (𝑡 + 𝑖) − (ℓ (𝑡) − 𝑖) = 𝐹 + 2 · log2 (𝑡 + 𝑖 + 1) − ℓ (𝑡) + 𝑖 (9)

For an InfiniFilter created at Generation 𝑡 , Equation 10 denotes
\𝑡 as the overall false positive rate. It is derived by weighting the
false positive rates for entries with a given age using Equation 9 by
the distribution of different ages in a filter from Equation 2.

\𝑡 =

ℓ (𝑡 )∑︁
𝑖=0

𝑓 (ℓ (𝑡) − 𝑖) · 2−𝐹𝑃𝑡 (𝑖) · 𝛼 ≲ 2−𝐹 · 𝛼 ·
ℓ (𝑡 )+1∑︁
𝑖=1

1
(𝑡 + 𝑖)2

(10)

Constant False Positive Rate. To obtain the overall false positive
rate the left-hand side of Equation 11 sums up the false positive
rate for every existing InfiniFilters in the system. The subsequent
derivation in Equation 11 shows that the overall false positive rate
converges to a constant with respect to the number of expansions
that have taken place. The reason is that newer InfiniFilters have
longer fingerprints on average and thus a significantly lower false
positive rate.

\ ≤ 2−𝐹 · 𝛼 ·
𝑋+1∑︁
𝑖=1

1
𝑖2
≲ 2−𝐹 · 𝛼 ·

∞∑︁
𝑖=0

1
𝑖2

= 2−𝐹 · 𝛼 · (𝜋2/6) ≲ 2−𝐹+1 · 𝛼 (11)

Faster Queries and Deletes. While we have already achieved our
goal by stabilizing the false positive rate with respect to the data
size, the approach introduced in this section also asymptotically
improves the performance of queries and deletes. The reason is
that newer InfiniFilters store entries from across a greater number
of consecutive expansions as they are assigned longer fingerprints
to begin with. This restricts the number of InfiniFilters 𝑐 to be at
most 𝑂 (log2 𝑁/(𝐹+log2 log2 𝑁 )). This is a lower expression for query
and delete cost than what we were able to obtain for the Chained
InfiniFilter in Section 4.2. To prove this formally, one can show by
induction that a chain of 𝑐 InfiniFilters stores entries from at least
𝑐 · (𝐹 + log2 𝑐) consecutive generations.
Summary.We summarize the properties of the Chained InfiniFil-
ter with Growing Fingerprints in Row 3 of Table 3. In contrast to
the Chained InfiniFilter in Row 2, it offers a constant rather than
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Figure 13: As the data size grows, Geometric Chaining exhibits a rapidly deteriorating query cost, while the Fingerprint Sacrifice
method exhibits a rapidly increasing false positive rate. In contrast, InfiniFilter maintains a stabler query cost, false positive
rate, memory footprint and insertion cost as the data size grows.

a logarithmic false positive rate and faster queries/deletes in ex-
change for a slightly higher memory footprint. Hence, it offers
a new attractive design choice for applications that require even
stabler performance guarantees as the data grows.

5 EVALUATION
We now turn to evaluate InfiniFilter and its variants against other
filters and methods for filter expansion.
Platform. Our machine has two Intel Xeon E5-2690v4 (2.6 GHz,
14 cores) with a total of 28 cores and 56 hyper-threads. There are
512GB of RAM, 35MB of L3 cache, 256KB of L2 cache, and 32KB of
L1 cache. There are two 960GB SSDs and four 1.8TB HDDs, though
we do not use these drives in the experiments. An Ubuntu 18.04.5
LTS operating system is installed.
Baselines.We first compare the Chained InfiniFilter against the Bit
Sacrifice method and Geometric Chaining from Section 3. We do
not compare to Linear Chaining as it is dominated by the Geometric
Chaining and is therefore non-competitive.

We implemented InfiniFilter and all the other baselines in Java.
We chose Java to make our filter implementations compatible with
popular key-value stores that heavily use filters, includingHBase [4]
and Cassandra [3], both of which are written in Java. Our imple-
mentation includes of a Quotient Filter class, which is inherited
by each of the baselines as a separate class to provide a means
of expansion. Since all baselines share the same Quotient Filter
implementation, any differences in their performance results arise
purely from the expansion strategy rather than implementation
idiosyncrasies. We use version 11.0.16 of the Java compiler. We
employ xxhash [29] as the hash function for all baselines.

All baselines are initialized with the same number of bits per
entry. Three of these bits are employed by the quotient filter as
metadata bits to resolve hash collisions. With Geometric Chaining
method and Bit Sacrifice method, this leaves the remaining bits to
be used as fingerprints. For Infinifilter, one bit is used as a unary

flag, meaning its fingerprints are initialized with one fewer bit than
the other baselines.
Setup. All experiments involve inserting or querying uniformly
randomly distributed eight byte integer keys generated using the
java.util.Random class. We set the occupancy threshold at which
each of the baselines expands to 80%.

All of the evaluation figures show how different cost metrics
evolve as we insert more data into the filter. Between every two
adjacent points in any curve in each figure, one expansion occurs,
meaning the data size doubles. We consider this as a phase. Each
phase commences with an expansion and proceeds to fill up the
filter to 80% capacity. We measure the average insertion latency for
each phase by dividing the duration of the phase by the number of
insertions that took place. Hence, our measurements for average
insertion latency account for the cost of expansion.

To focus on worst-case performance, we measure query latency
and the false positive rate at the end of each phase, right before the
next expansion. At this point, queries and insertions need to tra-
verse the longest possible clusters on average. Furthermore, there
are more opportunities for false positives to occur as runs are longer.
This holds for all the different expansion methods that we bench-
mark as they are all built on top of Quotient Filter.

At the end of each phase, we also measure memory footprint as
the total filter size divided by the number of entries that have been
inserted. Hence, our memory measurements also account for the
20% spare capacity in each filter.
InfiniFilter Offers Superior Cost Balances. Figure 13 Parts (A)
to (D) compares the different baselines with an initialization of 16
bits per entry. The Bit Sacrifice method only supports 13 expansions
until its fingerprints run out of bits, while the other two baselines
can continue expanding indefinitely.

Part (A) focuses on query cost. The Geometric Chaining method
exhibits the fastest-growing query costs since a new filter is added
to the chain in each expansion, and the entire chain is traversed in
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Figure 14: The more positive queries take place relative to insertions, the more InfiniFilter is able to keep the false positive rate
and query costs stable using rejuvenation operations.
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Figure 15: Increasing the fingerprint lengths of newer entries inserted into the filter allows to stabilize the false positive rate
even in the absence of rejuvenation operations.

each query. The Bit Sacrifice method exhibits stable performance
but cannot expand indefinitely. The Chained InfiniFilter maintains
modest query overheads that increase slightly towards the end of
the experiment as a Secondary Infinifilter is allocated, meaning that
two filters are accessed per each query instead of one.

Part (B) measures the false positive rate. The Bit Sacrifice method
exhibits the fasting growing false positive rate as one bit from each
fingerprint is sacrificed in each expansion. Therefore, the false
positive rate doubles in each phase of the experiment. InfiniFilter
and Geometric Chaining exhibit lower and more slowly increasing
false positive rates as the data size grows. The dotted lines with
matching colors for each of the baselines reflect the analytical cost
models. The model error is proportional to the actual false positive
rate, meaning that as the false positive rate grows, the error becomes
more noticeable in the figure.

Part (C)measures thememory footprint. The Bit Sacrificemethod
has decreasing overheads as all fingerprints shrink by one bit in
each phase. InfiniFilter and the Geometric Chaining method employ
the same amount of memory.

Part (D) focuses on insertion overheads. The Bit Sacrifice method
and InfiniFilter exhibit higher insertion costs by a modest constant
factor than the Geometric Chaining method. The reason is that
unlike the Geometric Chaining method, which simply allocates
a new empty filter to expand, the other two methods must also
migrate all existing entries into a new filter during expansion. This
is also what allows them to support faster queries.

Overall, InfiniFilter dominates the Bit Sacrifice method by better
scaling the false positive rate and supporting infinite expansions.
Compared to Geometric Chaining, InfiniFilter supports >10x faster
queries in exchange for ≈ 2x slower insertions.

To show these results hold in general, Figure 13 Parts (E) to (H)
repeat the experiment with initialization of 8 rather than 16 bits per
entry. The Bit Sacrifice method in this case runs out of fingerprint

bits after five expansions, while the other two methods can con-
tinue expanding indefinitely. InfiniFilter has a slightly higher false
positive rate than Geometric Chaining because it employs some of
its memory for unary counters, though it continues to significantly
improve on Geometric Chaining in terms of query cost.

Rejuvenation Operations. Figure 14 demonstrates how rejuvena-
tion operations allow the Chained InfiniFilter to maintain a stable
false positive rate and query overheads across expansions. The ex-
periment interleaves uniformly random queries to existing entries
along with insertions of new entries. After each of these queries,
we rejuvenate the longest matching fingerprint in the target run,
as described in Sections 4.1 and 4.2. The experiment illustrates four
curves, each with a different ratio between the number of reju-
venation operations to the number of insertions. A ratio of zero
means there are no rejuvenation operations, 0.2 means we issue
one rejuvenation operation for every five writes, etc. At the end
of each phase, we issue queries to non-existing entries to measure
the false positive rate. Parts (A) and (B) of the figure focus on an
initialization with 16 bits per entry while Parts (C) and (D) employ
8 bits per entry. As this experiment only affects query costs and
the false positive rate, we do not illustrate memory or insertion
overheads as they are the same as in Figure 13.

Parts (A) and (C) of Figure 14 show that higher proportions of
rejuvenation operations in the workload maintain a lower and more
stable false positive rate. The reason is that more rejuvenation oper-
ations keep the fingerprints longer on average. Meanwhile, Parts (B)
and (D) of Figure 14 show that higher proportions of rejuvenation
operations also keep query costs lower and more stable. The reason
is that they migrate older entries from the secondary InfiniFilter or
from the chain into the Active InfiniFilter. This reduces cluster and
chain lengths for these smaller InfiniFilters. Hence, queries infer
that a matching fingerprint does not exist in them more quickly.
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Figure 16: Unlike static filters, InfiniFilter supports indefinite growth while (A) requiring less memory upfront, (B) having a
competitive query cost, (C) preserving a stable false positive rate, and (D) paying a slight toll in terms of insertion throughput.

Since at least a small proportion of queries to existing entries
typically does exist in most applications, rejuvenation operations
can be employed as effective means of keeping the false positive
rate and query costs stable across expansions.
Growing Fingerprints. Rejuvenation operations only help stabi-
lize the false positive rate if queries to existing entries are evenly
distributed in the data set. To stabilize the false positive rate as
the data grows regardless of the query distribution, Section 4.3
proposes to increase the lengths of fingerprints of newer entries
as a function of the data size. Figure 15 showcases this technique
using the curves labeled growing fingerprints and compares it to the
version of InfiniFilter from before with stable fingerprint sizes. As
a baseline, we also add Geometric Chaining with growing memory
(abbreviated GCGM) from [56], whose properties are summarized
in Row 3 of Table 2. In the experiment, there are no rejuvenation
operations. All baselines are initialized with 8 bits per entry.

Part (A) of Figure 15 shows that InfiniFilter with growing finger-
prints completely stabilizes the false positive rate. The price is a
slowly increasing memory footprint, as shown in Part (B). The dot-
ted lines with matching colors in Part (A) for each of the baselines
reflect the analytical cost models. While GCGM offers a similar false
positive rate and memory footprint to Infinifilter with growing fin-
gerprints, it is non-competitive in terms of its query cost, as shown
in Part (C). Part (C) also demonstrates that query overheads also
stay more modest with InfiniFilter with growing fingerprints as
this technique slows down the rate at which the chain of infiniFilter
grows. This improves query costs toward the end of the experiment.
Part (D) demonstrates that this technique does not impact insertion
performance in the context of InfiniFilter.
Comparison to Static Baselines. We now compare InfiniFilter to
three static filters with a fixed capacity pre-allocated in advance:
a regular Quotient filter [7], a Bloom filter [9], and a Cuckoo fil-
ter [33]. This goal is to compare InfiniFilter to the Pre-Allocation
method from Section 3. Moreover, these experiments illuminate the
performance impacts of choosing Quotient filter as a base method
for InfiniFilter as opposed to other filter designs. Each of the base-
lines is initialized with 16 bits per entry, and we use the Chained
InfiniFilter variant from Section 4.3 with growing fingerprints. The
Cuckoo filter has four slots per bucket. The Bloom filter employs 11
hash functions, which is the optimal number given 16 bits per entry.
This experiment measures performance in a finer resolution than
before to show how InfiniFilter behaves across the board rather
than only when it is just about to expand.

Figure 16 Part (A) compares the overall memory footprint across
the baselines as we insert 109 data entries from scratch. The static

filters exhibit a high memory footprint from the onset, even while
the data size is small in comparison. Furthermore, they are unable
to accommodate data growth beyond their pre-allocated capacity
(≈ 108 entries). In contrast, InfiniFilter scales the memory footprint
in proportion to the data size by expanding gradually. Hence, it
requires less memory upfront and supports indefinite growth.

Figure 16 Part (B) measures latency for queries to non-existing
keys. InfiniFilter is initially the fastest baseline as it is smaller than
the others and so it fully fits into the L3 cache. As the data grows,
however, it outgrows the cache, and a secondary InfiniFilter is cre-
ated. This results in a slowdown. The static quotient filter is initially
the second fastest baseline as most slots are empty, so it only checks
on average one “is_occupied” flag per query before encountering a
zero and terminating. As it reaches capacity, however, cluster sizes
grow and query performance deteriorates. Bloom filter is initially
the third slowest baseline. It also initially checks one bit on average
before encountering a zero and terminating. As it reaches its allot-
ted capacity, however, the percentage of ones in the filter grows to
≈ 50%, and so on average two bits are checked before encountering
a zero and terminating. Hence, latency approximately doubles as
the data size grows. The reason the Bloom filter is initially slower
than the quotient filter is due to modulo operations to obtain the
target bit from a hash value. We employ modulo operations since a
Bloom filter’s size is not generally a power of 2. The static Cuckoo
filter exhibits stable performance across the experiment as it always
searches eight fingerprint slots across two random bucket locations,
resulting in two cache misses. Overall, InfiniFilter offers similar,
if not better, query performance relative to its static counterparts,
while also supporting gradual expansion and indefinite growth.

Figure 16 Part (C) shows that the false positive rate with a Bloom
filter is initially lowest as the probability of all hash functions hitting
ones is infinitesimal when the Bloom filter is nearly empty. As more
data is inserted, however, its false positive rate exceeds all other
baselines as predicted by Equation 1. The false positive rate for
the static Cuckoo and Quotient filters grows in proportion to the
number of entries until they fill up and can no longer expand. In
contrast, InfiniFilter provides and preserves a stable and predictable
false positive rate that is on par with the other baselines’ ultimate
false positive rate.

Figure 16 Part (D) shows that Bloom filter exhibits the slowest
insertion speed as each insertion entails one cache miss for each
of the 11 hash functions. Cuckoo filter and Quotient filter exhibit
similar performance across the board as each insertion usually only
entails one cache miss. However, their performance deteriorates
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as the data grows and larger clusters need to be accessed in Quo-
tient filter and more swapping happens across the cuckoo filters’
buckets. InfiniFilter, in contrast, exhibits fluctuating insertion per-
formance due to its expansion operations. This is the core trade-off
of InfiniFilter relative to the static methods.

Overall, in contrast to static baselines, InfiniFilter exhibits slightly
slower insertion throughout. In exchange, it requires less memory
upfront and supports indefinite data growth while maintaining
similar query performance and false positive rate.

6 RELATEDWORK
Bloom Filters. Numerous Bloom filter variants have been pro-
posed and surveyed [12, 51, 66]. They support counting [10, 34, 63],
vectorization [59], deletes [62], more efficient hashing [25, 44], and
better cache locality [13, 23, 47, 49, 60]. While Bloom filters have not
been shown to support efficient expansion, it is possible to accom-
modate dynamic data sets with them using Linear Chaining [41, 42],
Geometric Chaining [1, 71], or by retrieving a fingerprint for each
entry from storage [70]. Section 3 discusses these different options.
Filters as Hash Tables of Fingerprints. While we implement
InfiniFilter on top of Quotient Filter [7], there exist various other
filters that store a fingerprint for each entry within a compact hash
table. The Vector and Counting Quotient Filters employ nested
buckets and traverse them quickly using SIMD operations [57, 58].
Cuckoo filter resolves hash collisions using partial-key cuckoo
hashing [33]. Morton Filter is a Cuckoo filter variant that biases
insertions to one bucket to improve query cost [11]. Vacuum Filter
is another Cuckoo filter variant with better cache locality [68]. The
Crate Filter employs larger hash buckets and evicts overflowing
entries to a smaller spare hash table [8]. Prefix Filter is a variant of
the Crate Filter that evicts the largest fingerprint to help queries
avoid searching the spare hash table [31]. TinySet adapts the bucket
encoding based on the load targeting the bucket [30]. Xor and
Ribbon filters improve memory utilization in exchange for a higher
construction cost [27, 40]. Across many of these filters, it is possible
to employ the Fingerprint Sacrifice method, discussed in Section 3,
to expand. However, this causes the false positive rate to rapidly
increase. Integrating InfiniFilter with these filters to harness their
nuanced properties while allowing them to efficiently expand can
make for intriguing future work.
Theoretical Algorithms and Bounds. Pagh, Segev, and Wieder
prove the following lower bound: If we initialize a filter to constant
capacity and expand it to contain 𝑁 keys, the filter must at some
point use at least log(log(𝑁 )) bits per key in addition to what is
required for a filter with a fixed capacity of 𝑁 keys [56].

Pagh, Segev, andWieder also describe two expandable filters [56]:
The first uses Geometric Chaining (see Section 3) with polynomially
decreasing false positive rates assigned to larger filters along the
chain. This asymptotocally improves the approach of [1] which
uses geometrically decreasing false positive rates. This structure’s
space overhead matches the lower bound up to a constant factor,
but queries must search log(𝑁 ) filters.

The second data structure is a hash table of fingerprints that
duplicates void entries across both candidate buckets in each expan-
sion. This construction exhibits constant time queries and constant
amortized insertions. However, it needs to assume an upper bound

of 𝑈 on the number of keys to achieve an overhead of roughly
𝑂 (log log𝑈 ) bits per key. This is close to the lower bound when
log log𝑈 is close to log log𝑁 , which may be reasonable in some
settings (e.g., when keys come from a finite set of size 𝑈 and the
set 𝑁 is not too small). To support deletes, this structure encodes
a binary age counter and a deletion flag for every fingerprint, and
it employs an auxiliary dictionary to disambiguate entries with
matching fingerprints. These additional components inflate space
costs by a significant constant factor. Also, having to search both
the filter and dictionary doubles query cost.

An asymptotically better filter was later presented by Liu, Yin,
and Yu [48]. If 𝑁 and𝑈 are polynomially related, this data structure
achieves constant time per operation with high probability and a
more modest space overhead of log log𝑁 +𝑂 (log log log𝑁 ) bits per
key, which matches the leading term of the lower bound. However,
this structure has not been shown to support deletes.

The constructions of [48, 56] have to our knowledge never been
implemented, but it is of course interesting to compare their theoret-
ical properties to those of InfiniFilter. First, these structures either
require a hard limit𝑈 on the number of keys or use Ω(log𝑁 ) time
to answer queries. Analyzing these constant time filters for 𝑁 > 𝑈 ,
we find that either the space complexity or the false positive rate
increases significantly, so the bound on 𝑁 is necessary.

In contrast, the chained InfiniFilter from Section 4.3 meets the
space lower bound of [56] even if 𝑁 is unbounded while supporting
a constant false positive rate, queries and deletes in 𝑂 ( log𝑁

𝐹+log log𝑁 )
time, and insertions in constant amortized time. Furthermore, In-
finiFilter’s novel deletion algorithm, which removes the longest
matching fingerprint within a bucket, removes the need for addi-
tional machinery to support deletes.
Range Filters. Recently, several range filters have been proposed
to allow filtering range queries [38, 45, 52, 67, 73]. Applying design
elements from InfiniFilter to allow to efficiently expand range filters
is an intriguing future direction of work.

7 CONCLUSION
This paper introduces InfiniFilter, a novel method for expanding
set-membership filters as the size of the data that they represent
grows. InfiniFilter is a hash table of fingerprints that expands by
doubling in size and sacrificing a fingerprint from each entry to
map it to the expanded capacity. It employs a novel entry format
that allows setting longer fingerprints to newer entries to stabilize
the false positive rate, and it supports fast insertions/deletes/queries
by virtue of using a unified hash table. It employs chaining as a
technique to guarantee indefinite expansion without significantly
increasing the cost of queries or deletes. It also employs a novel
deletion algorithm that targets the longest matching fingerprint
within a target slot to prevent false negatives. InfiniFilter can re-
juvenate the fingerprints of older entries opportunistically during
queries to existing entries, or it can assign increasing fingerprint
sizes to newer entries to stabilize the false positive rate regardless
of the query distribution. Overall, InfiniFilter scales the cost per
operation, the false positive rate, and the memory footprint better
than any existing method while supporting expansion up to an
unbounded universe size.
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