
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 41, 424436 (1993)

Surpassing the Information Theoretic Bound
with Fusion Trees

MICHAEL L. FREDMAN*

Rutgers University, New Brunswick, New Jersey, Bellcore, and
University of Califonia, San Diego, California

AND

DAN E. WILLARD?

State University of New York, Albany, New York

Received October 23, 1990; revised September 2, 1991

This paper introduces a new sublogarithmic data structure for searching, the fusion tree.
These trees lead to improved worst-case algorithms for sorting and searching, surpassing the
limitations of the information theoretic lower bound. G 1993 Academic PKSS, IIIC.

1. INTRODUCTION

This paper introduces a new sublogarithmic data structure for searching, the
fusion tree. These trees lead to improved worst-case algorithms for sorting and
searching, surpassing the limitations of the information theoretic lower bound. (We
define search operations so that an unsuccessful search returns the predecessor of
the search key.)

The information theoretic bound asserts that sorting N numbers requires N log N
comparisons in the worst case. The degree of universality of this bound has not
been fully resolved. Paul and Simon [4] have established that any unit cost
random access machine algorithm whose operations include addition, subtraction,
multiplication, and comparison with zero (but not division or bit-wise Boolean
operations) requires SZ(Nlog N) time to sort N numbers in the worst case. On the
other hand, with the inclusion of division and Boolean operations, they obtain a
linear time algorithm. This linear time algorithm, however, suffers from an abuse of
the unit cost assumption. In particular, the algorithm generates operands during the
course of its computation whose individual lengths are N* times the length of the
largest of the N numbers to be sorted.

* Research supported partially by NSF Grant CCR-8504245.
+ Research supported partially by NSF Grant CCR90-60509 and by Bellcore.

424
0022~0000/93 $5.00
Copyright 0 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

THE INFORMATION THEORETIC BARRIER 425

What seems to be needed is a computational model that avoids the potential
abuses of the unit cost random access machine, but allows for unit cost operations
among operands of “reasonable” size, i.e., operands of size commensurate with the
sizes of the numbers to be sorted. Accordingly, we consider a reformulation of the
sorting problem wherein our machine has a b-bit word size, and each of the N input
numbers is assumed to be a non-negative integer less than 2’ (and hence each tits
into one word). Moreover, it is desirable that a sorting algorithm use only O(N)
words of memory.

We assume throughout this paper that the number of data items that are present
never exceeds 2’, the universe size. (To cope with a larger number of items, we
could proceed by storing bucket pointers in our data structure, with equal items
placed in common buckets.)

Our “finite universe” reformulation of the sorting problem suggests the use of
finite universe priority queues and similar types of data structures. For example,
there is the priority queue of Van Emde Boas et al [5] which accommodates
priority queue operations in time log log U per operation, where U = 2’ is the
universe size. This structure requires U words of memory, however. An alternative
is Willard’s Y-fast tries [6] in conjunction with the dynamic perfect hashing
methods of Dietzfelbinger et al. [3], which brings the space down to linear in N,
and accommodates priority queue operations in amortized randomized time
log log U per operation. Besides the fact that either too much space of randomi-
zation is required, these approaches improve upon conventional sorting only for
sufticiently large values of N (i.e., when log N% log log U).

Another finite universe data structure for implementing priority queue operations
is described in Ajtai, Fredman, and Komlos [11. This data structure is defined only
within the cell probe model of computation and cannot be implemented with
normal machine instructions. However, it is tantalizing in that it accommodates
priority queue operations in constant time per operation for N sufficiently small
compared with U. Ajtai et al. [l] state as an open problem whether some variant
of their data structure can be implemented in a more realistic machine model. This
paper contains a partial solution to this problem; one, however, which is good
enough to be embedded in a new type of search tree data structure: the “fusion
tree.”

Fusion trees accommodate dynamic search operations in amortized time
O(log N/log log N) per operation on a random access machine with b-bit word size,
whose instruction set includes addition, subtraction, multiplication, comparison,
and bit-wise AND operations. With the use of fusion trees, we can construct a
linear space O(N log N/log log N) worst case time-sorting algorithm. We emphasize
that the implicit constant inside the O-notation is independent of b. Moreover, if
we allow randomization and integer division, we show that dynamic searching and
sorting can be accomplished in times, respectively, O(m) and O(Nm).

Our algorithms have theoretical interest only; the constant factors involved in the
execution times preclude practicality.

426 FREDMAN AND WILLARD

2. NOTATION AND OTHER PRELIMINARIES

We let bin(a,, a2, . ..) denotes the sum 2”’ + 202 + . . . for non-negative ai. To refer
to the bits of a binary number, we consecutively number its bit positions with
position zero corresponding to its least significant bit. Thus, if a, < a2 < . . ., then
the quantity bin(a,, a2, . ..) contains ones precisely in bit positions a,, a*,

We assume that the multipliction instruction produces a two-word product, one
consisting of the most significant b bits, the other containing the least significant b
bits. This fact enables us to effect a right shift; upon multiplying x by bin(b - Y), we
obtain the result of right shifting x by r bits (in the significant portion of the
product). This procedure depends, however, on having available the quantity
bin(b - r), either as a program constant or as the result of a previous computation.

We occasionally require operands that slightly exceed the size of a single machine
word. In such circumstances, we use double precision methods.

We observe that the bitwise Boolean operations, OR and XOR (exclusive OR),
can be implemented on our machine by making use of the constant 2’- 1 =
bin(O, 1, b - l), subtraction (so that we can complement a word), along with the
AND operation.

Given a set of numbers S and a number x, we denote by rank,(x) the value
I{t I tes, Kx}l.

3. OVERVIEW

The fusion tree can be roughly regarded as an implementation of a B-tree [2]
such that (a) the approximate degree B of an internal node is an increasing,
unbounded function of N, and (b) when performing a key search, the correct
child of each node along the search path can be determined in constant time,
independently of B. This suMices to achieve o(log N) search time. It will be the case,
however, that updating an internal node (inserting or deleting a child, splitting the
node, etc.) will require time B4. To keep the amortized cost of update operations
under control, we modify our structure so that it can be viewed as a B-tree whose
leaves are identified as the roots of weight balanced binary search trees of size
approximately B4. For example, when the size of one of these binary search trees
becomes too large, it is split into two trees with its associated root (B-tree leaf)
likewise splitting. This reduces the amortized number of updates to the internal
portion of the B-tree by a factor of B4, while increasing the search times only by
an additive amount of log B. (We require that every key in the set represented by
the Fusion tree reside in these binary trees; when a key gets deleted it is
unnecessary to remove its presence from the B-tree nodes, where it serves only as
a search discriminator.) Since we will be able to maintain log B = @(log log N)
using routine methods, we achieve a search tree whose operations can be performed
in O(log N/log log N) amortized time.

THE INFORMATION THEORETIC BARRIER 427

Our algorithms require a fixed number of constants whose values depend on the
word size b. We assume that these constants are given as part of the algorithms, and
we are not charged for their computations, which could depend on the word size, b.
This introduces a small amount of non-uniformity (in terms of b) into our algorithms.

The core of our data structure lies in our ability to represent a B-tree node
so that (a) we can determine the correct child of a node in constant time when
conducting a search, and (b) we can update a node in time B4. This aspect of our
data structure is motivated by an extends the work of Ajtai et al. [11. We turn our
attention to these considerations.

Consider a B-tree node consisting of k keys (B/2 6 k < B) given by S=
{U 1, .a*, uk}. In order to determine the correct child of the node when conducting a
search for U, it suffices to compute rank,(u). This is to be accomplished in constant
time. Central to the representation of our B-tree node is the notion of compressed
key representation, which we proceed to describe.

4. COMPRESSED KEY REPRESENTATION

Given a set S= {ul, uk} consisting of b-bit numbers, we proceed to construct
a set B(S) of distinguishing bit positions and a set K(S) = {ti,, S,} of r-bit
numbers, where I = IB(S)j <k - 1.

Our definition of B(S) proceeds recursively. If ISJ = 1, then B(S) is the empty set.
Otherwise, let p be the most significant bit position that distinguishes between two
of the numbers in S. Let S, = { ol, u,} consist of those UPS in S for which ui has
a zero in bit position p, and let S, = {wi, wh} consist of those uls for which ui
has a one in bit position p. Note that g, h > 1 and g + h = k. Then B(S) = {p} u
Wo) u B(S,).

Now define tii to be the result of deleting from ui all bits except for those
occupying positions contained in B(S). More formally, let ci < c2 < .. . < c, denote
the elements of B(S) in sorted order. Then the bit in position j- 1 of tii is the c,th
bit of ui. We refer to iii as the compressed key representative of ui, and we define
K(S) = {a,, . ..) a,}. Observe that this compression operation is order preserving
among the elements of S.

Given an arbitrary b-bit number u not necessarily in S, we define a(S) likewise
to be the result of extracting just those bits of u occupying positions in B(S).
The following lemma presents an important property of the compressed key
representation.

LEMMA 1. Let cl< . . . < c, be the elements of B(S) in sorted order and defme
co= -1, c,+1 = b. Let tii be an arbitrary compressed key in K(S), and suppose that
for an arbitrary b-bit number u # ui, the most significant bit position in which u(S)
and t’ii differ is position m - 1. (In other words, the full keys u and ui agree in bit
positions c, + 1, c,, but disagree in position c,. If u(S) = li,., then we define m = 0.)
Assume that the most signtficant bit position p in which u and ui dzyfer satisfies

428 FREDMAN AND WILLARD

p > c,. Then rank,(u) is uniquely determined by the interval (c,~ , , cj) containing p,
together with the relative order between u and ui.

ProoJ First, observe that the assumption p > c,, together with the fact that u
and ui agree in bit positions, c, + 1, c, imply the p cannot be any of the ci)s. We
proceed by induction on k = (S(. If k = 1, then the result is trivial. Now suppose
p E (c,, c,, 1). By definition of c,, all elements in S agree in the bit positions more
significant than position c,, and therefore, rank,(u) = 0 or k, depending on whether
u < ui or u > ui. Now suppose that p < c,. Then u and ui agree down to bit position
c,. Assume without loss of generality that u and ui have a zero in bit position c,.
Then (using the notation preceding the statement of the lemma), U, ES, =
fv 1, vg}, and rank,(u) <g since u < w,, w,, (as each of the wi)s have a one in
bit position c,). It follows that rank,(u)= rank,,,(u), and we proceed (below) to
reduce to the case S= So and apply the induction hypothesis. We observe that
B(S,) c B(S), and therefore, the sorted sequence c; CC; < .. ., which comprises
the elements of B(S,), is a subsequence of c1 < c2 < The most significant bit
position ci in which u and ui differ (from among just the positions c; , c;, . ..) clearly
satisfies cb Q c,. Therefore, p > ck. Applying the induction hypothesis for So and
observing that the intervals (c,- 1, cj) refine the intervals (cl- 1, c,!), the lemma
follows.

The above lemma enables us to reduce the computation of rank,(u) to
computing rank,,,(li(S)) as we now sketch. By computing rank,&ti(S)), we
determine the predecessor iij and the successor Cj + 1 of ti(S) in K(S) (one of the two
quantities ij or fij+ 1 may not exist). Next, we compare u with ui and uj+ 1 ; we are
done if uj ,< u Q uj+ 1. Otherwise choose tii (i=j or j-t 1) to be the value among tii
and Cj+l having the longest prefix of significant bits in common with d(S). Since
u<u, or u>u~+~ (by assumption), it must be the case that (using the notation of
Lemma 1) p>cm, and therefore, Lemma 1 can be applied to determine the rank of
u once we know the interval (cr, c,-+ 1) containing p.

A convenient alternative description for the set B(S) that will be used below is
given as follows. Assume that the ui)s are sorted, so that u1 < u2 < . . . Let di be
the most significant bit position in which ui and ui+ 1 differ. Then B(S) =
Id,, 4, . ..> 4-J.

A difliculty with using compressed keys as well as with computing the transfor-
mation that maps u into z?(S) (in constant time) is that there is no obvious way to
relocate the appropriate extracted bits so that they form a consecutive block of bits.
The desired properties of the representation, however, are preserved by any similar
transformation that relocates the extracted bits into (possibly nonconsecutive)
positions without changing their relative order. We assume that the unused
positions are tilled with zeros. Because we ultimately need to concatenate the
compressed representations of the keys in S into a single b-bit word, it is desirable
that the extracted bits be relocated into a relatively narrow, if not consecutive, field
of bits. This can be accomplished by an appropriate multiplication along with
bitwise AND operations (to clear out the unwanted bits) as we proceed to describe.

THE INFORMATION THEORETIC BARRIER 429

Let c,< ... < c, be the bit positions (elements of B(S)) that need to be relocated,
and let u be the quantity from which we wish to extract these bits. Let
C= bin(c,, c2, c,). Assuming that the quantity C is available to us, we compute
u = u AND C to zero out the irrelevant portion of u. Next, we multiply v by a
suitable quantity M to relocate the appropriate bits of u into a narrow field, and
once again use AND to zero out irrelevant bits. Our task is to prove the existence
(and ultimately construct within our update algorithm) this quantity M. Writing
M= bin(m,, m2, m,), if we ignore for the moment the interfering effects of
cross terms and carries that occur with multiplication, we can regard the effect of
multiplying u and M as the relocation of the bits in positions cl, c2, c, to the
respective locations c1 + m,, c, + m,. Our choosing to ignore the other cross
terms will be justified if we can also arrange for the Y* sums, ci + mj, 1~ i, j< r, to
be distinct (which, in particular, implies that no carries can take place). Our goal,
therefore, is to construct a set of integers, m,, m, such that (a) m, + cl <
m2 + c2 < . . . < m, + c,, (b) the mi + cj are distinct, and (c), the sums in (a) fail into
a “small” interval. Lemma 2 (below) provides the desired result. We further require
that m, + c1 = b, so that our newly compressed key is right justified in the
significant portion of the product. This requirement is easily satisfied by translating
the rnls of Lemma 2 by a suitable constant. We redefine the notation l;(S) (and
likewise the definition of the compressed keys ti,, tik), to reflect the
computationally accessible variant offered by this approach, noting again that the
desirable properties are preserved.

LEMMA 2. Given a sequence of Y integers, cl =C c1 < ... CC,, there exists a
sequence of r integers m,, m2, m, such that

(a) m,+c,<m,+c,< ... <m,+c,

(b) the r2 sums ci + m,i, 1 < i, j 6 r are distinct,

(cl (m,+c,)-(ml+cl)<r4.

Proof: First, we prove that there exist integers m;, rn: such that rn,! + c, $
rn,! + c,(mod r3) whenever i # j. Assuming for the moment that such integers can be
found, it follows that the r2 (non-reduced) sums ml + cj are all distinct, and
moreover, by adding suitable multiples of r3 to the rn: to obtain the final values mi,
we can further satisfy the requirement mi + ci < mi+ 1 + ci+, < mi + ci + r3, so that
(a), (b), and (c) are satisfied.

To prove the existence of ml,, rn:, suppose that t < r and that we have
succeeded in choosing rn; , rn: satisfying ml + cg $ rn; + c,(mod r3) when i # j. We
show how to construct a suitable rn: + 1, Observing that rni + 1 + ci E rn: + cj implies
m:+l= rn: + cj - ci, we can choose rni, 1 to be the least residue not represented
among the fewer than r3 residues of the form rn; + cj- ci, 1 <s < t, 1~ i, j < r. In

this way, we successively compute the quantities m;, mi.

430 FREDMAN AND WILLARD

5. FUSION

We proceed to describe the representation of a B-tree node. An example is
provided at the conclusion of this section. Assume that the keys stored in the node
are given by u1 < ... < uk, k < B. Let S= {u,, u,} and let B(S) = {c,, c2, c,}.
Our B-tree node contains the quantity C= bin(c,, cZ, . ..) as well as the quantity
M= bin(m, , mz, . ..) which p rovides the multiplier used in the computation of c(S).
The final AND operation performed in the computation of ti(S) requires the
quantity, D = bin(c, + m,, c2 + m2, . ..). which is likewise to be made available, Also
present is an array containing the ~4;)s in sorted order and an array containing the
0,‘s in sorted order.

We will describe below a constant time method for computing rank,,,,(c(S)) and
Rand 1, h m w ere m is an integer in [0, b]. We will also describe a constant time
method for computing msb(u, v), which is defined to give the most significant bit
position in which the two b-bit quantities u and v differ. For the present, we assume
these capabilities.

As outlined in the previous section, after computing j= rank,(,,(li(S)), we
compare u with uj and uj+ ,. Assuming that u does not fall in the interval
[u,, ui+ r 1, we determine which of tii and ti, + r has the longest prefix of significant
bits in common with ti(S) by comparing l;(S) XOR zIij with I;(S) XOR li,+r (the
smaller value corresponds to the longer prefix). Assuming that zi,, h = j or j+ 1,
has the longer prefix in common with G(S), we compute m = msb(u, uh) and then
identify the interval (c,, c, + ,) containing m by computing i = rank,(,,(m). We
finally obtain rank,(u) by executing a table look-up indexed on h, i, and whether
(a) u < uh or (b) u > Us. The space requirement for our B-tree node is dominated
by the size of this table, which is O(B2). Since the number of B-tree nodes is
O(N/B4), the total amount of space required to represent the fusion tree is O(N).

The constant time computation of rank,,,,(ti(S)) proceeds as follows. Contained
within our B-tree node is a quantity K, into which the compressed keys from K(S)
are “fused” together-hence the name of our structure. More specifically, the bits of
K, are partitioned into E= /-!I”~] equal size fields. (If b is not divisible by E, then
the rightmost ELb/EJ bits are partitioned into equal size fields.) Each compressed
key will occupy a separate field. As a consequence, the maximum allowable degree
B of a node is constrained to satisfy B< E. Since, as indicated earlier, we can
assume that N Q 2’, we have sufficiently many fields to maintain log B=
Q(log log N), which achieves the stated speed-up over conventional sorting. Our
limitation on the size of E comes from the fact that our compressed keys require
up to k4 bits per key. The compressed keys are right justified in their respective
fields, and the leading two bits in each such field are zeros. The fields which do
not contain compressed keys are filled with all ones except for a leading zero. The
structure of K, is shown below:

K,=Ol...l . . . 0 0 . . tik OO...zi-l ... u__
%.

Field E Filed k Field k ~ 1 Field 1

THE INFORMATION THEORETIC BARRIER 431

Now by a executing a suitable multiplication and bitwise OR operation involving
z?(S), we obtain the number Y shown below (the fields of Y correspond to those of
KS):

Field E

..’ ~ lO.~~Oti(S).
Field 1

Next, we subtract KS from Y and zero out all but the lead bits of the fields
(performing a bitwise AND). The result contains a one only in those positions that
are leading bits of fields for which K, contained a z& with ii < G(S). A suitable
multiplication will now sum these bits, so that a portion of the resulting product
will contain the desired rank, which is then extracted by an AND operation.

We use the same method to compute rank B(S,(m) in constant time; instead of
using the quantity K, this computation utilizes the quantity Bs in which the
elements of B(S) are fused together.

Our next task is to describe the constant time computation of msb(u, v), the most
significant bit position in which the b-bit quantities u and u differ. For the
additional purpose of performing update operations on B-tree nodes as described
later, we wish to augment this computation so that as a by-product of computing
m = msb(u, u), we also obtain the quantities, bin(m) and bin(b -m). Our computa-
tion trivially reduces to determining the position of the leftmost one in u XOR u,
which we can write as Llg(u XOR V) _I (lg denotes the binary logarithm). We will
need the following lemma.

LEMMA 3. We say that a number x is d-sparse provided that the positions of all
of its one bits belong to a set of the form, Y = (a + di) 0 d i < d}, which consists of
d consecutive terms of an arithmetic progression with common difference d. (Not
all of these positions have to be occupied by ones, however.) If x is d-sparse, then
there exist constants y, and y, such that for z = (ylx) AND y,, the ith bit of the
significant part of z equals the bit in the position a + di of x, 0 < i < d. In other words,
z is the result of “perfectly compressing” x.

Proof Let a,=a+di and let ti=b-a+(l-d)i, Odi<d. Then a,+ti=b+i
and all sums ai + tj, 0 < i, j< d are distinct. We choose y, = bin(t 1, t,, . ..). and the
lemma follows easily.

The computation for Llg x_l is divided into two phases. We assume that x # 0.
Let s = r,/% + 11. Consider a partitioning of the b bits of our word x into right
justified contiguous blocks of s bits. (The leftmost block has possibly fewer than s
bits.) The number of blocks is given by rb/sl. The first phase of the computation
determines the leftmost block in which x contains a one, extracts, and then right
justifies this block. The second phase of the computation finds the leftmost one in
this extracted block.

Define C, to have ones precisely in the leftmost bit position of each block: i.e.,
C1 = bin(s - 1, 2s - 1, . ..). Define C, to be the bit-wise complement of C,. We first

432 FREDMAN AND WILLARD

compute the function, lead(x), which enjoys the property that for each of its blocks,
the leftmost bit within the block equals one if and only if the corresponding block
in x contains a one. (All other bits in lead(x) equal zero.) lead(x) is given by
(Ci - [(C, - x AND C,) AND C,]) OR (x AND C,). Because lead(x) is s-sparse,
we can apply Lemma 3 to obtain (in constant time) a compression of the leftmost
bits from each of the blocks of lead(x). Let compress(x) denote the result of this
compression. Now let P = {bin(O), bin(rb/sl - 1)) denote the first [b/s] non-
negative powers of two. We set b, = rank,(compress(x)). This rank computation
proceeds in the same manner in which we computed rank,(,,, except that we use
[b/s1 blocks each consisting of s bits in which the relevant quantities are right
justified. In place of the quantity KS, a constant consisting of the powers of two
fused together in right-to-left ascending order is used. (It is also necessary to use
double precision arithmetic since the quantities involved slightly fill up more than
single machine words.) The quantity b, identifies the block number (counting from
the right) of the leftmost block of x containing a one.

In addition to obtaining the block number of the leftmost block containing a
one, we can also obtain the quantity bin(r), where r is the position of the leftmost
one of lead(x). Reviewing the computation for rank,(compress(x)), after
performing the subtraction and zeroing of all but the lead bits from each of the
blocks of s bits (the moment just before we multiply), we obtain a quantity which
we denote as L. Among the lead bits of the blocks of L, the rightmost bl of them
will be ones, and the others will be zeros. Because the ones of L appear periodically
with period s, we can extract the leftmost such one (the other ones being replaced
by zeros) by subtracting from L the result of right shifting L by s bits. The position
of this extracted one, however, exactly coincides with the position of the leftmost
one of lead(x) since the blocks of lead(x) and L have a common size of s bits. In
a similar manner, we can also obtain bin(b - Y) by redoing our rank computation,
but using instead the powers of two fused together in left-to-right ascending order.
Now if bl = 1 then we proceed directly to the next phase (only the rightmost block
contains a one). Otherwise, we multiply x by bin(b - r + s - 1) = bin(b - r).
bin(s- 1) to extract (and right justify in the significant portion of the product) the
leftmost block of x containing a one. This completes the description of the first
phase of the computation for Llg x _I.

The second phase of the computation computes the position j of the leftmost
one in our extracted block of x consisting of s bits. As before, we perform a rank
computation of these s bits relative to the set consisting of the first s powers of two.
To obtain bin(j), we proceed as in the first phase, and then employ Lemma 3 to
perfectly compress the leading bits of the blocks. We obtain bin(s -j) by repeating
this computation, but reversing the order in which the powers of two are
concatenated. The results, b,, bin(v), bin(b-r), j, bin(j), and bin(s-j), of these
two phases can now be combined to yield the result m = Llg x J of the msb(u, u)
computation, augmented to include bin(m) and bin(b - m).

To complete our discussion of the fusion tree, we need to indicate how a B-tree
node can be built in time B4. The various update operations on B-tree nodes can

THE INFORMATION THEORETIC BARRIER 433

be regarded as special instances of the node building operation. We assume that we
are given the set of discriminator keys, S= (ul, u2, Q}. First, we sort the keys
obtaining (say) u1 < . . . < uk. Next, we compute the set B(S) which is given by
(msb(u,, ui+ 1) 1 1~ i < k}. The augmented computation of the ci = msb(ui, ui+ ,)
also yields the bin(c,) values. These values are sorted to obtain distinct copies and
then summed to obtain the constant C = bin(c,, c,). The proof of Lemma 2
provides an algorithm to compute the m, positions which define the multiplier M.
However, we actually need the values bin(m,). Since the rnls of Lemma 2 satisfy
b < ci + m,< b + r4, by starting with the bin(b - ci) values (provided by the
augmented msb computations), we can obtain each bin(mi) value by performing
O(lg Y) multiplications (in effect constructing addition chains). All of the required
computations for the construction of a B-tree node, including the construction of
the look-up table stored in such a node, involve straightforward algorithms that
can be performed in time polynomial in k. (k4 time is easily seen to be sufficient.)

The inclusion of a fixed number of constants in our algorithms (whose values
depend only on b) is necessitated by considerations typified by the following. The
quantity K, (in which the compressed keys are fused together) contains b’j6 fields,
all but the right-most k of which have the form (*) Oil... 1. Let w denote the
constant obtained by concatenating together fields having the form (*), and let
w’ = bin(f), where f is the common size of these fields. Using w and w’ we
can compute K, in O(k) time. (This assumes we have already computed the com-
pressed keys which make up K,.) Similarly, given I;(S), the constant time compu-
tation of the quantity Y used in the rank,&ti(S)) computation utilizes certain
constants.

EXAMPLE. The important aspects of our B-tree node representation are
illustrated by the following detailed example. Our node contains the key set
S = {x, y, z}. The values of X, y, and z are given below along with the values of the
various constructs associated with the node as discussed above. Again, bit positions
are numbered from right to left starting with zero:

X = 001001001110
y = 001001010110
z=001100000111.

The distinguishing bit positions are c1 = 4 and c2 = 8, so that

B(S) = (4, S}.

C = 000100010000, and we choose our multiplier to be
A4 = 000100100000.

Observe that our multiplier M shifts the distinguishing bits into positions 12 and
13, or equivalently, the two rightmost positions in the significant portion of the
product. Thus, to extract these bits, we use the mask

D = 000000000011.

434 FREDMAN AND WILLARD

Accordingly our compressed keys are given by (rightmost bits):

~-00, p=o1, i=lO,

and the concatenation K, of these compressed keys is given by

K,=OOlO 0001 0000. -I_-
f .fi *

The constant B,, the concatenation of the distinguishing bit positions, is given by

B, = 001000 000100. --
(‘2 (‘1

The look-up table giving rank,(u) as a function of h, i, and whether (a) u < uh or
(b) u > uh (as described in the third paragraph of Section 5) is

u. < llh U>U/I
I1 i i

0 1 2 0 1 2

1 0 0 0 1 2 3
2 1 0 0 2 2 3
3 2 2 0 3 3 3

Now suppose we wish to compute rank,(u), where u=000100010111. Utilizing
the constants C, M, and D, we obtain ti(S) = 11. Utilizing KS we determine that
rank,(,,(ti(S)) = 3. Finding that u <z (z being the third ranking element of S)
and seeing that S does not have an element of rank 4, we conclude h = 3. Next,
computing m = msb(u, z), we find that m = 9. Computing i = rank,(,,(m), we obtain
i = 2. Indexing into our table with the values h = 3, i = 2, and u <z (z = u,), we
conclude that rank,(u) = 0.

6. EXTENSIONS

We remark first that by suitably relining our fusion tree structure, we obtain the
worst case as opposed to amortized time bounds.

If we are willing to either (a) relax the linear space restriction or (b) preserve the
linear space restriction but use randomization and integer division, then we can
achieve m amortized time bounds for dynamic search operations. This
is accomplished by using the data structure of van Emde Boas et al. [S] in the
case of (a) (or, in the case of (b), using dynamic .Y-fast tries [3.6]) when N
exceeds

2(lw bh36
(*I

THE INFORMATION THEORETIC BARRIER 435

For such N, these data structures perform search operations in time O(log log U) =
O(log b) = O(m). For smaller N, we use the fusion tree, but it is modified to
maintain B= 0(2-). With this choice for B, the amortized complexities of our
operations are given by O(log B + log N/log B) = O(m). (We also need to
check that the constraint B < E is satisfied when N does not exceed (*).) Thus, with
the use of randomization and integer division, sorting can be accomplished in time
O(N m) and linear space.

7. APPLICATIONS

Sorting and searching frequently occur as algorithmic components. Moreover,
the commonly occurring priority queue data structure can be implemented as a
special case of searching. The field of computational geometry offers some
immediate applications of the fusion tree or simple modifications of the fusion tree.
For instance, we have improved algorithms for planar convex hull construction,
priority search trees and rectangle intersections, fractional cascading, and certain
orthogonal range query problems.

Another application leads to an improved version of Willard’s Q-fast tries [7].
As described above, the Y-fast trie in conjunction with dynamic perfect hashing
[3,6] provides a dynamic linear space data structure for searching with
randomized amortized O(log log U) time operations. This data structure provides
the best known performance for large subset sizes. The Q-fast trie, on the other
hand, provides the best known performance among linear space deterministic data
structures, again for large subset sizes. Balanced search trees constitute a
component part of the Q-fast trie. We can improve the performance of Q-fast tries
by using fusion trees to implement these search tree components and by changing
the parameters of the trie so that its height is given by Jlog U/log log U, and its
node degree is given by 2J’Og ““Og’Og u. The resulting data structure provides
Jlog U/log log U operation times, improving upon the original Q-fast trie by a
JlogTogU factor.

8. OPEN QUESTIONS

Two immediate open questions are: How fast can we sort? and How fast can we
search? Some interesting variations of these questions are as follows. First, we ask
if there exist possible exotic machine instructions that can lead to yet faster sorting
and searching algorithms. Put another way, Is RISC Risky? We note that the
instructions used in our algorithms belong to the class NC’. This can be considered
a reasonable restriction to impose on possible exotic instructions, although
the question remains interesting even without this restriction. Several people have
pointed out to the authors that while comparison is an AC0 operation, our

436 FREDMAN AND WILLARD

algorithms use multiplication, which does not belong to AC’. Thus, it would be
interesting to know if there exist fast sorting and searching algorithms that can
be implemented with AC0 instructions. Put another way, Can fusion trees be
implemented with brisk RISC?

9. CONCLUDING REMARK

The decision tree model of computation enjoys the properties of being reasonably
general, tractable, and oftentimes quite challenging. The beguiling successes of this
appealing model of computation have led to many claims that various Nlog N
algorithms are optimal, conclusions that should not be taken too seriously.

REFERENCES

1. M. AJJTAI, M. FREDMAN, AND J. KOMLOS, Hash functions for priority queues, Inform. and Comput. 63
(1984), 217-225.

2. R. BAYER AND E. MCCREIGHT, Organization and maintenance of large ordered Indices, Acta Znform.
1 (1972), 173-189.

3. M. DIETZFELBINGER, A. KARLIN, K. MEHLHORN, F. MEYER AUF DER HEIDE, H. ROBERT, AND R. E.
TARJAN, Dynamic perfect hashing: Upper and lower bounds, in “Proceedings, 29th IEEE Symposium
on Foundations of Computer Science, 1988,” pp. 524-533.

4. W. PAUL AND J. SIMON, Decision trees and random access machines, in “Symposium uber Logik und
Algolrithmik, Zurich 1980”; K. MEHLHORN, “Sorting and Searching,” pp. 85-97, Springer-Verlag,
New York/Berlin, 1984.

5. P. VAN EMDE BOAS, R. KAAS, AND E. ZIJLSTRA, Design and implementation of an efficient priority
queue, Math. Systems Theory 10 (1977), 99-127.

6. D. WILLARD, Log-logarithmic worst case range queries are possible in space O(N), Inform. Process.
Lsett. (1983), 81-84.

7. D. WILLARD, New trie data structures which support very fast search operations, J. Comput. System
Sci. 28 (1984), 379-394.

