
Dashing 2: genomic sketching with multiplicities and

locality-sensitive hashing

Daniel N. Baker1 and Ben Langmead1, *

1Department of Computer Science, Johns Hopkins University
*corresponding author; langmea@cs.jhu.edu

January 6, 2023

Abstract

A genomic sketch is a small, probabilistic representation of the set of k-mers in a sequencing
dataset. Sketches are building blocks for large-scale analyses that consider similarities between
many pairs of sequences or sequence collections. While existing tools can easily compare 10,000s
of genomes, relevant datasets can reach millions of sequences and beyond. Popular tools also
fail to consider k-mer multiplicities, making them less applicable in quantitative settings. We
describe a method called Dashing 2 that builds on the SetSketch data structure. SetSketch is re-
lated to HyperLogLog, but discards use of leading zero count in favor of a truncated logarithm
of adjustable base. Unlike HLL, SetSketch can perform multiplicity-aware sketching when com-
bined with the ProbMinHash method. Dashing 2 integrates locality-sensitive hashing to scale
all-pairs comparisons to millions of sequences. Dashing 2 is free, open source software available
at https://github.com/dnbaker/dashing2

1 Introduction

Sketching, e.g. based on MinHash or HyperLogLog, is a key building block for scaling sequence
comparison. Sketches built over all the k-mers in a sequence have been applied in clustering [1],
phylogenetic inference [2], strain-level profiling [3, 4], species delineation [5] and summarization
of genomic collections [6, 7]. While existing tools like Mash [1] and Dashing [7] can easily clus-
ter 10,000s of genomes, many relevant biological datasets are much larger, reaching millions of
sequences and beyond. Further, these tools fail to consider multiplicities of the k-mers, limiting
their applicability in settings where quantities matter, e.g. when analyzing collections of sequence
reads, or summaries from quantitative sequencing assays.

Dashing 2 builds on the recent SetSketch structure [8]. SetSketch is related to HyperLogLog
(HLL), but replaces the HLL’s leading zero count (LZC) operation with a truncated logarithm
of adjustable base. This addresses a major disadvantage of the HLL as implemented in Dash-
ing, since the LZC wastes about 2 bits of space out of every 8-bit estimator (“register”) stored.
SetSketch also has similarities to multiplicity-aware approaches like BagMinHash [9] and Prob-
MinHash [10]. All three approaches (SetSketch, BagMinHash and ProbMinHash) make decisions
about whether and how to update registers by performing a random draw from a distribution,

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://github.com/dnbaker/dashing2
https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

where the draw is seeded by a hash value derived from the input item. This allows SetSketch to
perform multiplicity-aware sketching in the same way as the other sketches. SetSketch also admits
a simple, accurate algorithm for computing similarity between sketches in a joint fashion.

Dashing 2 uses locality-sensitive hashing (LSH) to scale all-pairs comparisons to very large
inputs. It finds near neighbors by grouping samples with equal register groupings. This makes
Dashing 2 particularly effective for all-pairs comparisons over large sequence collections.

Dashing 2’s implementation of the SetSketch structure is efficient and versatile. Like the orig-
inal Dashing software, Dashing 2 can be run in a mode that sketches a sequencing dataset and
saves the result to a file. This is activated by the dashing2 sketch command. Also like Dash-
ing, Dashing 2 can compare sequences or sketches in an all-pairs fashion (dashing2 cmp or,
equivalently, dashing2 dist). When combined with the --cache option, Dashing 2 loads pre-
existing sketches from disk, making the command much faster. When the input to these com-
mands consists of many sketches or datasets, Dashing 2 performs all-pairs comparisons and out-
puts tabular results. Dashing 2’s new LSH-assisted all-pairs comparison mode can be activated
via the --similarity-threshold x option, where e.g. x = 0.8 instructs Dashing 2 to use an
LSH approach to consider only pairs whose similarity is likely to be 80% or higher.

Dashing 2 supports a range of sequence alphabets, including the 2-bit DNA alphabet and a
standard 20-letter amino acid protein alphabet (using --protein option) and compressed amino
acid alphabets of size 14, 8, and 6 (--protein14, --protein8, and --protein6) as described
by [11]. Compressed protein alphabets are more appropriate when sequence identity is low.

Dashing 2’s new multiplicity-aware sketching mode can be enabled for sequencing data in-
puts via the --prob option. Dashing 2 can sketch BigWig inputs [12] encoding numerical cover-
age vectors using the --bigwig option. The more generic --wsketch mode can sketch inputs
consisting of keys and weights.

Besides the modes discussed above, Dashing 2 has modes for computing containment coeffi-
cients, symmetric containment coefficient, and intersection size. Further, Dashing 2 has modes for
computing Jaccard coefficients in an exact manner, without sketching or estimation; this is use-
ful for evaluation but comes at the expense of longer running time and larger memory footprint
compared to sketching-based approaches.

2 Methods

A sketching method distills a large dataset into a smaller collection of representative items. The
MinHash method, for example, distills a dataset consisting of many items into a smaller set of just
the k items that are minimal, i.e. having minimal hash values as computed by a hash function.

Since genomic data usually takes the form of a sequence collection, we must first convert such
a collection to a mathematical set. This is typically accomplished by transforming the sequences
into the set of their constituent length-k substrings, i.e. their k-mers. Since sequences that are re-
verse complements of each other should be considered identical, k-mers are usually canonicalized
before being added to the set. That is, if a given k-mer is greater than its reverse complement, it is
replaced with its reverse complement.

Though sketches are usually much smaller than the original dataset, they can still be used to
estimate various relevant quantities, such as the cardinality of a dataset, i.e. how many distinct
items/k-mers are present. Further, sketches for two different datasets can be used to estimate the
similarity between the datasets. This can be done in far less memory or time compared to that
required to compare the original, unsketched datasets.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

2.1 SetSketch

Dashing [7] used the HyperLogLog data structure and its “leading zero count” (LZC) strategy to
update register values. Specifically: an incoming item is hashed and its bitwise representation is
partitioned into a prefix p and a suffix q. The prefix p determines which register the item maps to,
while the suffix q determines how the register should be updated. Specifically, the algorithm finds
the number of consecutive unset bits in the most significant digits of q, i.e. its LZC. If the LZC
is greater than the register’s current value, the value is set to the LZC. The LZC serves as a kind
of order-of-magnitude estimator; many such estimators can be averaged to accurately estimate
cardinalities and similarities.

Whereas Dashing’s HLL registers were each 8 bits wide and able to hold a value in the range
0–255, LZCs could range only from 0 to 64. In fact, LZCs could would usually span a smaller
range than this, since bits used for the prefix p are not considered. An LZC would therefore fail to
use at least 2 bits of an 8-bit register, leaving the structure 25% empty. Though registers could be
shrunk to 6 bits, this would conflict with Dashing’s use of SIMD instructions with 8-bit operands.

Ertl’s SetSketch [8] addresses this issue by replacing the LZC with a logarithm of configurable
base b. This comes with a drawback: the addition of a single item to the SetSketch potentially
updates the values of all registers, rather than just one. Given a data item d, the update rule for
each register Ki, is:

Ki = max(Ki, ⌊1− logb hi(d))⌋) (1)

where hi is an independent hash function specific to register i distributed exponentially; i.e. hi(d) ∼
Exp(a).

For reasons explained below, it is useful to factor this update rule into two phases, with delay-
ing the logarithms to the second phase. We use Ki to denote the register’s value at update time
and K ′

i
to denote its value after the final truncation.

Ki = min(Ki, hi(d)) K ′

i = ⌊1− logbKi⌋ (2)

Where again hi(d) ∼ Exp(a). The subtraction in the K ′

i
formula inverts the notion of “extreme-

ness” from a minimum to a maximum, hence the use of min in Equation 2 versus the use of max
in Equation 1.

The strategy of letting each register’s value be a function of all the input items has advantages.
First: since the final value is a function of all items, rather than a register-specific subset of them,
the final values are statistically independent. Second: the exponential rate a and logarithm base
b are parameters of the sketch. We can set b in a way that spreads the Ki values over a range of
our choosing. If registers are 8 bits wide, we can choose a and b so that ⌊1 − logb hi(d))⌋ ranges
from 0 to 255, landing outside the range only with low (and controllable) probability. If registers
are another size (e.g. Dashing 2 supports 4, 8, 16, 32 and 64-bit registers), a and b can be adjusted.
Methods for setting a and b are described in section 2.2 of [8].

This comes with a potential disadvantage. Since each register is a function of every input
item, each addition may require O(m) work where m is the number of registers. Ertl [8] proposes
optimizations that ensure that the work per update quickly becomes O(1) in the typical case where
the input is much larger than m. This is accomplished by (a) maintaining a value Kmax equal to
the maximum among all the registers’ current values, and (b) reordering the inner loop so that
iterations occur in increasing order by value of the hi(d) ∼ Exp(a) draw. Note that the maximum is
maintained over the original, untruncated exponential draws in the Ki variables, not the truncated
version eventually stored in the K ′

i
variables. Once we reach an iteration where the draw has value

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

hi(d) > Kmax, neither the current nor a subsequent iteration can possibly change the value of a
register, and the inner loop can break.

Another disadvantage of the SetSketch is the computational cost of the exponential draws and,
related to that, the computational cost of logarithms. While the strategy just described reduces the
number of exponential draws, later sections describe how we reduce the cost of logarithms.

2.2 Similarity comparison

Dashing 1’s default algorithm for estimating the Jaccard coefficient between HLLs A and B, J(A,B),
used the Maximum Likelihood Estimation (MLE) method of [13]. This models register values as
Poisson random variables and uses an iterative root-finding to estimate the Poisson parameter
from the histogram of register values in the union (A ∪ B) HLL. This was less accurate but sub-
stantially faster than the related Joint MLE (JMLE) method [13], which required histogramming of
joint register values.

Dashing 2 uses a simpler joint estimator named µ̂simple [8] 1. It has a closed-form solution
and does not require an iterative root-finding procedure. Being a “joint” estimator, µ̂simple also
does not require a union sketch; it is a function only of the input sketches A and B. Finally,
µ̂simple does not require a histogram of register values. Instead, it requires two counts: D+ and
D−. D+ is the number of registers in A that are greater than their counterparts in B and D− is the
number of registers in A that are less than their counterparts. Unlike MLE and JMLE histograms,
D+ and D− can be computed using only Single-Instruction Multiple-Data (SIMD) instructions.
In particular, a combination of SIMD greater-than/less-than and population-count instructions
enable rapid tallying of D+ and D− with respect to chunks of registers at a time. As described in
[8], a mathematical complication arises when the sets are mostly disjoint. We fall back on Ertl’s
alternative formulae αdisj and βdisj from [8] in such cases.

2.3 Full Dashing 2 sketch update

Algorithm 1 gives the update algorithm for the full version of the Dashing 2 SetSketch. This
is the default for weighted sketching, and can be enabled for non-weighted sketching using the
option --full-setsketch. Without this option, the one-permutation strategy described in the
next subsection is used instead. Inputs consist of the register array K comprising the sketch, a
MaxTree array T maintaining maxima over power-of-two-sized stretches of registers, the item
X to be added, and the item’s weight W . When used for unweighted sketching, W equals 1.
Registers in K are initialized to the maximum possible value.

A single update could require modifying any number of registers, from 0 to m. To avoid
O(m) work on average, the algorithm follows the strategy of Ertl [8], examining registers in or-
der according to the probability it will be updated, i.e. according to the extremeness that reg-
ister’s exponential random draw. The algorithm uses a pseudo-random number generator RNG,
seeded with X for deterministic updates. RNG.nextExponentialSpacing(i,m,W) returns the value
that must be added to obtain the next draw in increasing order, according to the recurrence
xi = xi−1 + 1

m−i+1Exp(aW). The recurrence follows from the memoryless property of the ex-
ponential distribution [10]. RNG.nextFisherYates() samples a new register randomly without re-
placement with Fisher-Yates shuffling, as in Algorithm 6 of [10]. By matching the increasing series
of exponential draws with a random sequence of register choices, we visit registers in the desired

1This estimator is described only in the “v1” version of the paper pre-print cited. Later versions of the paper describe
Brent’s root-finding algorithm instead.

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

order of most to least likely to be updated. Kahan summation [14, 15] is used to reduce numerical
errors when summing exponential spacings.

Conditional statements on lines 4 and 12 of Algorithm 1 abort upon reaching a draw that is less
extreme than the least extreme that could affect a register value (Kmax). Accordingly, the Kmax ←
T.update(K[i], i) statements on lines 9 and 17 update a structure maintaining the current “least
extreme draw” in the Kmax variable per Algorithm 4 of [10]. Updates to the Kmax structure take
O(log(m)) time, and are required only when a register is modified. The number of loop iterations
is inversely related to the number of items added, approaching 0 as the number far exceeds m.

Input: SetSketch K[0..m− 1], MaxTree T [0..m− 2], item X of weight W
Result: K and T updated according to X,W

1 RNG← RandomNumberGenerator(X,m)
2 RV← RNG.nextExponentialSpacing(0,m,W)
3 Kmax ← T.max()
4 if RV > Kmax then

5 return

end

6 i← RNG.nextFisherYates()
7 if RV < K[i] then

8 K[i]← RV
9 Kmax ← T.update(K[i], i)

end

10 for i← 1,m− 1 do

11 RV← RV + RNG.nextExponentialSpacing(i,m,W)
12 if RV > Kmax then

13 return

end

14 i← RNG.nextFisherYates()
15 if RV < K[i] then

16 K[i]← RV
17 Kmax ← T.update(K[i], i)

end

end
Algorithm 1: Update Full Dashing 2 SetSketch

2.4 One-permutation SetSketch

By default, Dashing 2 computes unweighted sketches and uses an economical “one-permutation”
update method [16], which modifies at most one register per update. This method uses some bits
of the random draw to choose which register to update (Algorithm S2, Supplementary Material),
similarly to how the HLL update rule in Dashing uses the hash prefix p.

While the one-permutation approach is efficient compared to a full update, accuracy suffers
when many registers are empty, i.e. when the input has few items relative to m. To maintain
accuracy, we implement the densification approach of [17], applied after finalization. This strategy
has similar accuracy compared to the full SetSketch, but is more efficient in practice. Because of
this, we made this one-permutation mode the default for unweighted sketching. The full update

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

Input : Ks: Map from id’s to SetSketches, for all datasets
Input : k: Target number of nearest neighbors to find
Input : id: Identifier for this dataset
Input : RNG: Pseudo-random number generator
Input : seed: Pseudo-random seed
Input : N : Number of super-register sizes in index
Input : LSH : map from 〈 table id, super-register id, super-register value 〉 triples to a corresponding list of

datasets
Output: L: List of nearest neighbors

1 i← N − 1
2 if i > 2 then
3 RNG.initialize(seed)

end
// Over tables 0 .. N -1, from largest super-register size (most specific) to smallest (least specific)

4 while i ≥ 0 do
5 P ← min(2i, 2i)
6 if i ≤ 2 then
7 S← m/N

else
8 S← m · 8/N

end
9 j ← 0

// Loop over super-registers
10 while j < S do
11 if i ≤ 2 then

// Next non-overlapping super-register
12 SuperReg← Ks[id][K · j .. K · j + P − 1]

else
// Random super-register of length P

13 ri← RNG.randomInt(0, m− P)
14 SuperReg← Ks[id][ri .. ri+ P − 1]

end
// Append this dataset to the list for this table, super-register
// super-register value combination

15 for n ∈ LSH[〈i, j, SuperReg 〉] do
16 L.append(n)
17 if L.length() = k · 3 then
18 return L

end

end
19 j ← j + 1

end
20 i← i− 1
21 return L

end

Algorithm 2: Find candidates for k nearest neighbors for dataset 〈K, id〉 using LSH index.
Result is a list of at most 3·k candidates that is later refined and ordered using Jaccard similarity.

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

rule is used instead when the user enables weighted sketching, or when the user enables it with
the --full-setsketch option.

2.5 SetSketch parameters

Like the HyperLogLog, the number of registers m is a parameter of the SetSketch. Unlike Hyper-
LogLog, SetSketch has a related parameter, the register width in bits. Other key parameters are the
rate for the exponential draws (a), and the log base used for truncation needed to fit draws into
registers (b). As in [8], we use q to denote the value that is 1 less than the maximum register value.
E.g. for 8-bit registers, q = 28 − 1− 1 = 254.

While [8] gives theoretical guidelines for choosing a, b and other parameters, these assume
foreknowledge of input cardinalities. On the other hand, multiple SetSketches are comparable
only if they were built using identical parameters. This creates a tension between wishing to
choose the parameters sooner, in order to make compact sketches, versus later, to delay truncation
until we can ensure all relevant sketches are constructed and truncated with identical a, b and q.

Dashing 2’s default strategy is to set a and b according to the overall set of input datasets, and
to shape and truncate the sketches according to user-configurable choices for m and q. Dashing 2
also allows the user to delay the choices for a, b and q, so that larger, untruncated sketches can be
stored temporarily in preparation for future truncation and comparison with other sketches.

To select a and b according to the data, Dashing 2 first forms untruncated sketches, then com-
putes b and a according to the expressions:

b = exp

(

lnmax(K∗)/min(K∗)

q

)

a = max(K∗)/b (3)

Where K∗ denotes a concatenations of all untruncated register values from all inputs. For experi-
ments in this study, we invoked Dashing 2 with all input datasets at once, ensuring a and b are set
identically for all.

2.6 Delayed logarithms

Potentially expensive logarithm calculations are used in two tasks: (a) truncation of register val-
ues, and (b) to perform the exponential draws. Dashing 2 avoids these costs in two ways. First, it
uses the two-step strategy of Equation 2 to delay truncation until a finalization step, which runs
only after all items are added (Algorithm S3, Supplementary Material). Before finalization, in-
termediate register values are stored as un-truncated 64-bit floating-point numbers. As a result,
the update rule uses only a minimum, rather than both a logarithm and a maximum. The total
number of logarithmic truncations performed at most m regardless of the number of items added
to the sketch.

This comes at the cost of requiring additional space at sketching time. For the entire algorithm
up to finalization, we must store a 64-bit value for each register even if finalization will later reduce
that to, e.g. 8 bits. Since practical sketches require only thousands of registers, this is not onerous
in practice.

2.7 Approximate logarithms

The second use of logarithms is in the exponential Exp(a) random draw, which is accomplished
by computing − ln(Unif())/a where Unif() is a uniform random draw between 0 and 1. We ob-
served that, once the sketch becomes quite full, many exponential draws are well above the Kmax

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

ceiling, aborting the inner loop. While an inaccurate logarithm might cause us to miscompute
whether a draw is under the Kmax ceiling, this arises only for draws near the ceiling. We use a
fast, approximate logarithm first, reverting to a more accurate (and expensive) logarithm only if
the first result is close to Kmax.

For fast logarithms, we use an approximation computed using the floating-point number’s
integral representation. Specifically, we use a modified version of the algorithm of [18]. This can
overestimate the result by a multiplicative factor of up to 1.42. By dividing the fast-logarithm
result by this number, we can determine if the approximation is close enough to Kmax to require a
full logarithm computation. This affects the computation within RNG.nextExponentialSpacing(),
called on lines 2 and 11, as well as the conditional checks on lines 4 and 12 of Algorithm 1, though
we omitted these details from the algorithm listing.

2.8 Weighted SetSketch

While [8] describes applications only to unweighted sketching, we extended SetSketch to consider
weightedness using the ProbMinHash [10] strategy, i.e. by multiplying the exponential draw’s rate
parameter by the item’s weight, represented by argument W to RNG.nextExponentialSpacing() on
lines 2 and 11 of Algorithm 1. When comparing sketches weighted in this way, the quantity being
estimated is a version of the Jaccard coefficient called the “Probability Jaccard similarity” JP :

JP (A,B) =
∑

d∈D

1
∑

d′∈D
max

(

wA(d′)
wA(d) ,

wB(d′)
wB(d)

) (4)

Where D is the item universe and wA and wB are weight functions for items in sets A and B.
A key question is how to obtain wA and wB . When the input is sequencing data, the weight

of an item (k-mer) should equal its relative frequency. By default, Dashing 2 will use a hash
table to track the exact relative frequency for each item. But Dashing 2 also supports a faster
and more memory-efficient method that estimates each item’s frequency using a feature hash-
ing [19] approach, equivalent to a single-row Count-Min Sketch [20]. This mode is enabled with
the --countsketch-size option. Non-sequencing datasets might also come with an inherent
notion of “weight;” for instance, if input items represent genes and associated expression lev-
els, these levels could be immediately used as weights, without the need for counting or for the
feature-hashing data structure.

Optimizations for logarithms described above are also used for weighted sketching.

2.9 Locality-Sensitive Hashing (LSH) implementation

To scale all-pairs comparisons, we implemented a filtering approach based on locality-sensitive
hashing (LSH). Given a minimum similarity threshold, the filter avoids computing many below-
threshold pairwise comparisons. The LSH method works by grouping SetSketch registers into
“super-registers.” For instance, the first four registers (K[0...3]) might constitute the first super-
register, the next four (K[4...7]) the second super-register, etc. Associated with each super-register
is a map from possible values to a list of all input datasets having that value in that super-register.
In our example, the keys for the first super-register will consist of all combinations of the first
four registers K[0...3] observed in an input dataset, and the values will be the associated lists of
datasets. An LSH index might consist of several such tables, each with a distinct super-register
group size. Algorithm S1 shows how the index is updated with one additional dataset.

Since registers are independent, a size-P super-register will match between datasets A and
B with probability J(A,B)P , where J is the Jaccard coefficient. When performing a large-scale

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

all-pairs comparison, Dashing 2 begins by computing LSH indexes for values of P in a user-
configurable subset of the values {1, 2, 4, 6, 8, 10}. By default, Dashing 2 tries P ∈ {1, 2}, but it can
be configured to try more values for P via the --nlsh option, corresponding to the N variable in
Algorithms S1 and 2. For P ∈ {1, 2}, the super-registers are formed by partitioning registers into
m/P non-overlapping groups. For larger values of P , we select a random set of m·8/P contiguous
groups of registers. In this case, super-registers can overlap.

Algorithm S1 details how a single dataset is added to an LSH index. Algorithm 2 details how
we query to find a list of candidate nearest neighbors for a dataset using the LSH index. In both
cases, a pair of nested loops is used. The outer loop iterates over LSH tables from the most to
least specific (largest to smallest P), while the inner loop iterates over super-registers. In the case
of Algorithm S1, an iteration of the inner loop updates the LSH table with the id of the current
dataset. In the case of Algorithm 2, an iteration of the inner loop contains a final loop that updates
a running list of candidate datasets with all other datasets having the same value for the current
super-register.

The LSH tables are used in two distinct modes of Dashing 2. The mode activated with (--topk)
builds a k-nearest neighbor (KNN) graph from the input datasets and follows the logic of Algo-
rithm 2. For a given pivot genome, we use the LSH tables to generate a list of ⌈Os × k⌉ candidates
for each input genome, where Os > 1 is an over-sampling rate, set to 3 by default. We then esti-
mate the Jaccard similarity between the pivot and each of the candidates in the order they were
discovered, keeping only the k with the greatest Jaccard coefficients. While this can result in some
misreported neighbors, e.g. because a near neighbor happened not to coincide with the pivot in
any super-register, this possibility is reduced both by over-sampling and by the order in which we
attempt the LSH tables, i.e. from most to least specific.

In another mode, Dashing 2 reports pairwise distances between all pairs of genomes having
similarity above some threshold (--similarity-threshold X). In this mode, there is no ad-
ditional limit on the number of “neighbors” that might be reported for a genome. While querying
the index, we maintain a heap of all neighbors with similarity above a given threshold.

2.10 Exact similarity mode

The ability to compute exact Jaccard coefficients is useful for evaluating Dashing 2’s estimates.
Dashing 2 therefore implements two modes for exact computation of Jaccard coefficients. One
uses sorted k-mer hash sets (--set); the other uses k-mer count dictionaries (--countdict).

2.11 Sketching sequencing reads

Dashing 2 can also sketch inputs consisting of sequencing reads, e.g. in FASTQ format. This in-
volves the extra challenge of handling sequencing errors, since k-mers containing errors can be
far more numerous than correct k-mers and so can dominate and bias similarity estimates. For
this reason, methods for sketching sequencing-read inputs attempt to filter out k-mers containing
sequencing errors prior to computing cardinality or similarity. Dashing 2 adapts the approach of
Mash [1] for eliminating k-mers below a specific count threshold. For instance, if the target thresh-
old is set to 2, Dashing 2’s SetSketch implementations (both one-permutation and full) maintain a
dictionary of items seen fewer than 2 times so far. Once an item’s count reaches 2, it is added to
the final SetSketch structure.

Dashing 2 can also use a downsampling approach (--downsample <fraction>) to ran-
domly keep a specified fraction of the input k-mers. The decision to keep or suppress a k-mer
is made independently for each k-mer, rahter than for each distinct k-mer. In this way, frequent

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

k-mers – i.e. occurring more than 1
F

of the time – are unlikely to have all copies suppressed. The
filter incurs little computational cost but greatly reduces the number of error k-mers ending up
in the sketch. This is similar to the ideas used in sequencing error correction [21] to distinguish
k-mers with or without sequencing errors.

Weighted sketching modes can be particularly appropriate for sequencing reads, since they
have the effect of down-weighting error k-mers, which tend to occur infrequently compared to
correct k-mers.

3 Results

We used Dashing 2 v2.1.11-10-g128c. All experiments were performed on a Lenovo ThinkSystem
SR630 with 48 3.0GHz Xeon CPUs and 1.5 TB of memory.

We downloaded the Refseq database on Jun 30, 2022 [22]. Filtering to just complete genome
sequences, we gathered 128,827 sequences, 729 from the “archea” category, 115,548 from “bacte-
ria,” 338 from “fungi,” 2 from “human” (the GRCh38 and the CHM13 assemblies), 267 from “in-
vertebrate,” 145 from “plant,” 88 from “protozoa,” 183 from “vertebrate mammalian,” 274 from
“vertebrate other” and 11,253 from “viral.” The compressed FASTA files occupied 475 GB. Over-
all, genome lengths varied from 223 bp to over 34 billion bp, with mean and median lengths of
11.1 million and 4.22 million bp respectively.

Some experiments required high-fidelity sketches. We computed a 1-MB sketch for each using
Dashing 2 with sketch --binary-output -S 20 -k 31. For all 128,827 complete genomes,
this process took 50m:45s using GNU parallel [23] for multiprocess parallelism.

The following subsections use these assemblies as a starting point. In particular, Sections 3.1
and 3.1 & 3.2 use sets of 1,010 and 984 genome pairs selected to cover a range of similarities.
Section 3.3 uses a subset of 50,000 assemblies to compare Dashing 2’s sketching and pairwise
similarity speed to that of Dashing 1. The exact lists of accessions used in each experiment are
provided in files referenced in the “Data and Software Availability” section.

3.1 Similarity estimation

We compiled a collection of pairs of assemblies covering a range of true Jaccard coefficients. If A
and B are sets of canonicalized k-mers from two assemblies, the Jaccard coefficient J(A,B) = |A∩
B|/|A ∪ B|. We first performed an all-pairs comparisons using the 128,827 high-fidelity sketches
described above. We then partitioned the space of Jaccard estimates into 100 buckets of equal
size. I.e. one bucket spanned Jaccard values in the range [0, 0.01), the next spanned values in
(0.01, 0.02], etc. We added an additional bucket for pairs with J(A,B) = 1. For each bucket,
we randomly selected 10 genome pairs having a Jaccard coefficient estimate within the bucket’s
range. We limited our attention to Refseq assemblies from the “archea,“ “bacteria” and “viral”
groups. At the end of this process we had a collection of 1,010 genome pairs (10 for each of the 101
buckets) with Jaccard coefficients spread evenly across the range [0, 1].

To obtain a notion of “truth” to compare against, we used Dashing 2’s full-accuracy mode
(which does not use sketching) to compute true Jaccard coefficients for all genome pairs for both
k-mer lengths. We also computed Average Nucleotide Identities (ANIs) for all selected genome
pairs using fastANI v1.33 [24]. fastANI computes an approximation, so we do not call these “true”
ANIs. But these have the advantage of being calculated using a separate approach from the one
used to compute the Jaccard coefficients; in particular, fastANI’s approach is not k-mer-based.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

k kbits Mash Dashing1 D2-full D2

21 8 1.79 1.10 0.776 0.814
32 0.872 0.711 0.669 0.651

128 0.765 0.644 0.628 0.616
31 8 1.95 0.938 0.584 0.595

32 0.766 0.580 0.475 0.463
128 0.544 0.479 0.461 0.456

Table 1: Sum of squared error between estimated and true Jaccard coefficients for several methods
and for all genome pairs. Bright red indicates the lowest error in each row. Dark red indicates
second-lowest error.

Using these genome pairs annotated with true Jaccard coefficients and fastANI-estimated
ANIs, we compared the accuracy of Dashing 2’s estimates to those of Dashing 1 v1.0 [7] and
Mash v2.3 [1]. We omitted BinDash initially as it would sometimes fail when comparing more
distant genome pairs. We ran Dashing 2 in two configurations. D2 used the “one-permutation”
SetSketch, with each update affecting at most one register. D2-full used the full update rule. We
did not run the D2W configuration of Dashing 2 here since the goal of these experiments is to
assess how well these modes estimate the typical “flat” version of the Jaccard similarity, rather
than the weighted version estimated by D2W.

Table 1 shows the sum of squared errors (SSE) between the tool-estimated Jaccard coefficient
and the true Jaccard, totaled across all 1,010 genome pairs. We show these results for sketch sizes
of 8 Kbits (8 × 1024 bits, equivalent to 1 Kbyte), 32 Kbits, and 128 Kbits. In all cases either D2 or
D2-full achieved lowest SSE, with the other achieving second-lowest. Dashing 2 and Dashing 1
both achieved lower SSE than Mash.

To additionally compare to BinDash, we filtered the 1,010 genome pairs down to the 984 pairs
having fastANI-estimated ANI greater than or equal to 87%. For this subset, we were always able
to run BinDash with no crashes. Table 2 shows these results for the same sketch sizes and values of
k as Table 1. In all but one case, D2 achieved the lowest SSE; the exception was the case of k = 21
and 8 Kbit sketch, where BinDash achieved the lowest SSE. D2 or D2-full achieved the lowest SSEs
in all other cases.

3.2 ANI estimation

We further assessed the Average Nucleotide Identity (ANI) estimates obtained by using the Mash
distance equation and re-scaling: ANIest = 1 + 1/k · ln(2J/(1 + J)). Here k is the k-mer length
and J is the estimated Jaccard coefficient. Negative ANIest values were rounded up to 0. In this
experiment, we additionally assessed the new multiplicity-aware (“weighted”) mode of Dashing
2, called D2W. The feature-hashing structure needed to obtain the weights for D2W mode was
configured to consist of 5 million 64-bit counts.

In this case, the input J to the ANIest equation was the probability Jaccard similarity (JP)
described in section 2.8, rather than the typical “flat” Jaccard coefficient. This experiment allows
us to assess whether J (as estimated by Dashing 1, D2 or D2-full) or JP (as estimated by D2W)
yields a better ANI estimate.

We assessed SSE between ANIest and the fastANI-estimated ANIs for Mash, Dashing 1, D2
and D2W (Table 3). In all cases, the D2W approach achieved either the lowest or second-lowest
SSE, with either D2 or Dashing 1 achieving the second-lowest SSE.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

k kbits Mash BinDash Dashing1 D2-full D2

21 8 1.78 0.750 1.08 0.773 0.812
32 0.870 0.676 0.705 0.668 0.651

128 0.764 0.648 0.642 0.628 0.615
31 8 1.94 0.600 0.912 0.583 0.594

32 0.764 0.480 0.573 0.475 0.463
128 0.544 0.473 0.477 0.461 0.456

Table 2: Sum of squared error between estimated and true Jaccard coefficients for several meth-
ods, using only genome pairs with estimated true ANI greater than 89%. Above this threshold,
BinDash ran with no estimation failures. Bright red indicates the lowest error and dark red the
second-lowest error in each row.

k kbits Mash Dashing1 D2 D2-full D2W

21 8 6.80 1.94 2.61 1.41 0.273
32 6.06 3.05 2.02 3.72 0.279

128 6.06 3.17 3.66 3.06 0.276
31 8 8.20 4.54 3.88 4.40 0.538

32 5.36 2.38 4.47 3.30 0.544
128 5.37 0.787 3.75 3.64 0.543

Table 3: Sum of squared error between estimated Mash distance and the ANI as computed by
fastANI. Bright red indicates the lowest error in each row. Dark red indicates second-lowest error.
In all cases except D2W, Mash distance is computed as a function of the estimated “flat” Jaccard
coefficient. In the case of D2W, Mash distance is a function of the Probability Jaccard Similarity
from equation 4.

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

3.3 Refseq sketching and pairwise comparisons

We used Dashing 1 and Dashing 2 to sketch a sample of 50,000 complete genome assemblies
downloaded from Refseq. Both were run using GNU parallel, allowing up to 12 sketching pro-
cesses to run at a time. Both tools were configured to produce a sketches 1 MB in size. Dashing 1
took 2h:00m:34s to construct all the sketches and Dashing 2 took 50m:46s.

We then used Dashing 1 and 2 to perform exhaustive all-pairwise Jaccard similarity compar-
isons across the 50,000 genomes (2 human assemblies and 49,998 bacterial assemblies), comparing
a total of 1.25 billion pairs of 1MB sketches. Both tools used their default similarity estimation
methods. In the case of Dashing 1’s, this was the MLE estimator of Ertl [13]. In the case of Dash-
ing 2, this was the simple joint estimator described in section 2.2. Both Dashing 1 and Dashing
were run with the -p80 --presketched options, enabling 80 simultaneous threads of execu-
tion and instructing both tools to use the already-computed sketches. Dashing 1 took 49h:41m to
estimate all-pairwise similarities, whereas Dashing 2 took 5h:41m and was about 8.7 times faster.

3.4 All-pairs comparisons using LSH

We performed all-pairs comparisons for a large collection of proteins by combining SetSketch with
locality-sensitive hashing to avoid comparisons unlikely to meet a minimum similarity threshold.
We used the UniProtKB/Swiss-Prot collection of 565,254 protein sequences, v2021 03. For each
protein, we used Dashing 2 to create a 10-mer sketch (-k10) of 256 registers (-S256). Proteins
were translated to a 14-letter reduced alphabet (--protein14) to capture more distant homol-
ogy [11]. We ran Dashing 2 in sketch --topk mode to perform all-pairs comparisons while
avoiding pairings that fail to appear in the top 256 neighbors of a protein. We used the default of
--nLSH 2 to use two distinct sizes of super-register groupings, corresponding to the N parame-
ter of Algorithm 2. The output was a K-Nearest-Neighbor (KNN) graph in tabular (TSV) format,
associating each protein to the 256 others with greatest Jaccard coefficient.

Because of both estimation and LSH error, the graph may include false positives (reported
neighbors that are not truly among the top 256) and/or false negatives (unreported neighbors that
are truly in the top 256). To measure the error introduced by LSH, we compared the KNN graph
to another KNN generated using exhaustive all-pairs comparisons. Importantly, the exhaustive
KNN was also built using Jaccard coefficient estimates, since exact computation of the Jaccard
coefficient is too computationally expensive. Thus, this experiment isolates error due to the LSH
filter only, and does not assess error due to the Jaccard estimate.

Relative to the exact method, Dashing 2’s LSH method achieved 100% recall and precision,
i.e. there were no false positives or false negatives among the neighbors found using LSH filtering.
Further, using the LSH, Dashing 2 was able to generate the graph in 43 seconds, compared to
56.2 minutes for the exhaustive method, a 78-fold speedup. The exhaustive method ultimately
performed 159,755,759,631 pairwise comparisons, compared to approximately 470M comparisons
performed by the LSH-assisted method. The 470M comparisons performed by LSH is about 3.5
times greater than the minimum determined by the number of neighbors (256) times the number
of proteins (565,254).

We also applied this approach to create a nearest-neighbor graph over the larger UniRef50
dataset, which is built by clustering UniRef90 seed sequences from the UniProt Knowledgebase
v2021 03 having at least 50% sequence identity to and 80% overlap with the longest sequence
in the cluster. The database contains 53,625,855 sequences totaling over 15 billion amino acids.
After sketching, the KNN graph was generated in less than 10 minutes. By contrast, the exhaus-
tive all-pairs comparisons approach required a much longer amount of time; we interrupted this

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

computation after 2 days and extrapolated that the total time would have exceeded a year.

4 Discussion

Dashing 2 combines the SetSketch with locality-sensitive hashing to bring multiplicity-aware sketch-
ing and fast filtering to genomic sketching analysis. Its all-pairs comparison method scales effec-
tively to millions of sequences. Dashing 2 can sketch FASTA and FASTQ inputs, as well as protein-
sequence inputs using a variety of protein alphabet reductions. It can compare sequences based on
Jaccard coefficient, Mash distance, or containment coefficient. It can also compare sequences based
on a weighted version of the Jaccard coefficient that is aware of the multiplicities of the input items.
Dashing 2 is free, open source software available at https://github.com/dnbaker/dashing2.

Dashing 2’s estimation error for the Jaccard coefficient and ANI estimates was lower than that
of the previous version of Dashing, and substantially lower than that of Mash. In cases where
BinDash can be run successfully, Dashing 2 had lower or comparable error to BinDash. Thus, it
will be important to continue to study the SetSketch as a highly accurate alternative not only to
the HyperLogLog sketch, but also the MinHash and b-bit MinHash methods.

It is remarkable that Dashing 2’s ANI estimation error was lowest when taking multiplicities
of the input items into account, i.e. when using a weighted Jaccard coefficient as input to the Mash
distance equation. This demonstrates that multiplicities are helpful not only for quantitative appli-
cations, but also in typical “flat” sketching scenarios. This motivates future study of sketch data
structures that account for multiplicities, as well as methods – like Dashing 2’s feature hashing
method – for efficiently compiling multiplicity information prior to sketching.

While the term “sketch” is used for various data structures in Bioinformatics, Dashing 2 is
designed for the scenario where many sequencing datasets must be compared to each other in
an efficient, scalable way. In these scenarios, we use the expedient of modeling the data as a set
(or multiset) of k-mers. Other studies describe sketching approaches that keep more detail about
the sequence content of each dataset, e.g. by keeping a ordered sequence of representative sub-
sequences from the longer sequence [25, 26]. The OrderMinHash study further points out that a
sketch for edit distance can be improved by taking k-mer multiplicity into account, a similar ob-
servation to the one we make in Table 3. But the advantages of such sketches come at the expense
of slower algorithms and larger memory footprint; in particular, these sketches may grow linearly
with the length of the sequence being sketched. That said, applications requiring more detailed
knowledge of the sequences, e.g. when distinguishing between similar strains or identifying par-
ticular alleles of interest, can benefit from these more detailed sketches.

5 Acknowledgements

We thank Otmar Ertl and Martin Steinneger for helpful conversations. This work used the Ex-
treme Science and Engineering Discovery Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1548562. In particular, we acknowledge Texas Advanced
Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that
have contributed to the research results reported within this paper. URL:

http://www.tacc.utexas.edu.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://github.com/dnbaker/dashing2
http://www.tacc.utexas.edu
https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

6 Funding

DNB and BL were supported by NIH/NIGMS grant R35GM139602 to BL. BL was also supported
by NIH/NIGMS grant R01HG012252. This work was carried out at Advanced Research Com-
puting at Hopkins (ARCH) core facility (rockfish.jhu.edu), which is supported by the National
Science Foundation (NSF) grant number OAC 1920103.

7 Author contributions

DNB and BL conceived the study, designed the experiments, wrote the experimental scripts, ran
the experiments and wrote the manuscript. DNB wrote the Dashing 2 software.

8 Data and Software Availability

Open source source code for the Dashing 2 software is at

https://github.com/dnbaker/dashing2

Scripts for performing the experiments described in this manuscript are at

https://github.com/dnbaker/dashing2-experiments

A list of the accessions for the 1,010 Refseq genome pairs used in Results 3.1 is at

https://www.cs.jhu.edu/˜langmea/resources/d2/pairs1010.csv

Accessions for the 984 Refseq genome pairs used in Results 3.2 are at

https://www.cs.jhu.edu/˜langmea/resources/d2/pairs984.csv

Accessions for the 50,000 Refseq genomes used in the experiments in Results 3.3 are at

https://www.cs.jhu.edu/˜langmea/resources/d2/refseq50k.txt.

References

1. Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S. &
Phillippy, A. M. Mash: fast genome and metagenome distance estimation using MinHash.
Genome Biol. 17, 132 (June 2016).

2. Criscuolo, A. On the transformation of MinHash-based uncorrected distances into proper
evolutionary distances for phylogenetic inference. F1000Res 9, 1309 (2020).

3. LaPierre, N., Alser, M., Eskin, E., Koslicki, D. & Mangul, S. Metalign: efficient alignment-
based metagenomic profiling via containment min hash. Genome Biol 21, 242 (Sept. 2020).

4. Dilthey, A. T., Jain, C., Koren, S. & Phillippy, A. M. Strain-level metagenomic assignment and
compositional estimation for long reads with MetaMaps. Nat Commun 10, 3066 (July 2019).

5. Gostinčar, C. Towards Genomic Criteria for Delineating Fungal Species. J Fungi (Basel) 6 (Oct.
2020).

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://github.com/dnbaker/dashing2
https://github.com/dnbaker/dashing2-experiments
https://www.cs.jhu.edu/~langmea/resources/d2/pairs1010.csv
https://www.cs.jhu.edu/~langmea/resources/d2/pairs984.csv
https://www.cs.jhu.edu/~langmea/resources/d2/refseq50k.txt
https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

6. Ondov, B. D., Starrett, G. J., Sappington, A., Kostic, A., Koren, S., Buck, C. B. & Phillippy,
A. M. Mash Screen: high-throughput sequence containment estimation for genome discov-
ery. Genome Biol 20, 232 (Nov. 2019).

7. Baker, D. N. & Langmead, B. Dashing: fast and accurate genomic distances with Hyper-
LogLog. Genome Biol 20, 265 (Dec. 2019).

8. Ertl, O. SetSketch: Filling the Gap between MinHash and HyperLogLog. Proc. VLDB Endow.
14, 2244–2257. ISSN: 2150-8097 (July 2021).

9. Ertl, O. BagMinHash - Minwise Hashing Algorithm for Weighted Sets in Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Association
for Computing Machinery, London, United Kingdom, 2018), 1368–1377. ISBN: 9781450355520.

10. Ertl, O. ProbMinHash – A Class of Locality-Sensitive Hash Algorithms for the (Probability)
Jaccard Similarity. IEEE Transactions on Knowledge and Data Engineering 34, 3491–3506 (2022).

11. Edgar, R. C. Local homology recognition and distance measures in linear time using com-
pressed amino acid alphabets. Nucleic Acids Research 32, 380–385. ISSN: 0305-1048 (Jan. 2004).

12. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed:
enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (Sept. 2010).

13. Ertl, O. New cardinality estimation algorithms for HyperLogLog sketches. CoRR abs/1702.01284.

arXiv: 1702.01284 (2017).

14. Kahan, W. Pracniques: Further Remarks on Reducing Truncation Errors. Commun. ACM 8,

40. ISSN: 0001-0782 (Jan. 1965).

15. Babuska, I. Numerical stability in mathematical analysis in (IFIP Congress, North-Holland, Am-
sterdan, 1969), 11–23.

16. Wang, J., Zhang, T., Sebe, N., Shen, H. T., et al. A survey on learning to hash. IEEE transactions
on pattern analysis and machine intelligence 40, 769–790 (2017).

17. Shrivastava, A. Optimal Densification for Fast and Accurate Minwise Hashing in Proceedings of
the 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 70 (PMLR,
June 2017), 3154–3163.

18. Schraudolph, N. N. A fast, compact approximation of the exponential function. Neural Com-
putation 11, 853–862 (1999).

19. Moody, J. ”Fast Learning in Multi-Resolution Hierarchies” in Proceedings of the 1st International
Conference on Neural Information Processing Systems (MIT Press, Cambridge, MA, USA, 1988),
29–39.

20. Cormode, G. & Muthukrishnan, S. An improved data stream summary: the count-min sketch
and its applications. Journal of Algorithms 55, 58–75. ISSN: 0196-6774 (2005).

21. Song, L., Florea, L. & Langmead, B. Lighter: fast and memory-efficient sequencing error cor-
rection without counting. Genome Biol 15, 509 (2014).

22. O’Leary, N. A., Wright, M. W., Brister, J. R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B.,
Robbertse, B., Smith-White, B. & Ako-Adjei, D. e. a. Reference sequence (RefSeq) database at
NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44,

D733–745 (Jan. 2016).

23. Tange, O. GNU Parallel - The Command-Line Power Tool. ;login: The USENIX Magazine 36,

42–47 (Feb. 2011).

16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://arxiv.org/abs/1702.01284
https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

24. Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High through-
put ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun
9, 5114 (Nov. 2018).

25. Marçais, G., DeBlasio, D., Pandey, P. & Kingsford, C. Locality-sensitive hashing for the edit
distance. Bioinformatics 35, i127–i135 (July 2019).

26. Jain, C., Rhie, A., Zhang, H., Chu, C., Walenz, B. P., Koren, S. & Phillippy, A. M. Weighted
minimizer sampling improves long read mapping. Bioinformatics 36, i111–i118 (July 2020).

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2022.10.16.512384doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.16.512384
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	SetSketch
	Similarity comparison
	Full Dashing 2 sketch update
	One-permutation SetSketch
	SetSketch parameters
	Delayed logarithms
	Approximate logarithms
	Weighted SetSketch
	Locality-Sensitive Hashing (LSH) implementation
	Exact similarity mode
	Sketching sequencing reads

	Results
	Similarity estimation
	ANI estimation
	Refseq sketching and pairwise comparisons
	All-pairs comparisons using LSH

	Discussion
	Acknowledgements
	Funding
	Author contributions
	Data and Software Availability

