
Chapter 9

van Emde Boas Trees

9.1 Introduction

The successor operations can be performed by any balanced binary tree in O(log n) time

and linear space. Under the comparison model, on a pointer machine, we cannot do bet-

ter, because we know that Ω(n log n) is required for sorting, and solving the successor set

problem in less-than-logarithmic time would also allow us to sort faster.

It is fortunate that we are not limited to the comparison model! By taking advantage of

simple operations like division and modulus, we can do far better.

Given a universe U = {0, 1, 2, ..., u−1}, maintain a subset S ⊆ U(|S| = n, |U | = u), subject

to the following operations :

• insert(x) — Add x ∈ U to S, i.e., S ← S ∪ {x}.

• delete(x) — Remove x from S, i.e., S ← S − {x}.

• succ(x) — Return the minimum y ∈ S, such that y ≥ x. ( Note that x ∈ U but x

need not be in S.)

• pred(x) — Return the maximum y ∈ S, such that y ≤ x.

• find(x) — Return whether x ∈ S.
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Example: Consider a set S = {4,19,30} from the universe U = {0,1,...,100},
Then pred(10) = 4, succ(19) = 30 and succ(30) = ∞.

9.2 Complexity :

All operations require time : O(log logu).

For now, space = θ(u). Later use randomization to get linear space(θ(n)).

Intuition : log logu comes from T(u) = T(
√
u) + 1

Example: Suppose that U contains the integers represented by 64-bit words. Then

log log 264 = 6.

9.3 Array-Based Naive Solutions

Consider the following two ways of storing elements in an array.

Choice 1:

χ[i] =

{

1 if i ∈ S.

0 otherwise

Insertion: O(1), Queries: O(u)

Example:

succ(1) = 2 .

Choice 2:

Ψ[i] =

{

j if j=succ(i).

Λ if no succ, ie largest element

Insertion: O(u), Queries: O(1)

Example:

! " #" # # # $
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succ(2) = 6.

Choice 1 wins over choice 2.

9.4 A Recursive Approach

The van Emde Boas tree (named after its inventor) works by repeatedly splitting the set

into smaller pieces, each of whose size is the square root of its parent’s size. Recall that if

T (u) = T (
√
u) +O(1) then T (u) = O(log log u).

We start with an unpleasant assumption - that we have an unlimited amount of space

available for our use. The raw deterministic van Emde Boas tree consumes an astounding

O(u) space! Later on, we will improve this to O(n), giving us a much more practical

algorithm.

Most of the time, odd universe sizes are not really required, and in any case they make

little difference to the performance of the algorithm. On the other hand, if we restrict the

size of the universe to a convenient subset of the powers of two, we can conveniently replace

square root, division, and modulus operations with simple bitshifts and masks.

Assumption 64. The universe size u = 22
k
for some integer k.

Before we begin, it will be helpful to state what our final results are.

Claim 65 (Time and space bounds of the randomized van Emde Boas tree). The ran-

domized version of the van Emde Boas tree answers search, predecessor and successor

queries in O(log log u) worst-case time. It performs the maintenance operations insert and

delete in amortized O(log log u) time. The structure takes O(n) space.

9.5 Basic Construction

Let’s assume (for the sake of induction) that we have a solution widgetW√
u for the successor

set problem of size
√
u. We will refer to W√

u as a subwidget. We use the subwidgets W√
u

to construct Wu, the solution for the problem of size u. The idea is to break up the universe

U into
√
u contiguous subuniverses, each of which is of size

√
u. Each subuniverse is solved

with W√
u. Then we use these solutions to solve Wu.
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Since we have
√
u subwidgets, we need to be able to determine which of these subwidgets

an element is contained in (assuming the element is contained in the set). By convention,

XH is the widget that contains X, while XL is the element that is stored in widget XH .

Mathematically Strict Restricted u

XL = X mod
√
u XL = X − (XH << 2k−1) High-order bits of X

XH = X−XL√
u

XH = X >> 2k−1 Low-order bits of X

(<< and >> are bitshifts)

As an example, if u = 232:

X = 222182065310 = 1000010001101110 0100101011101101 2

XL = 01001010111011012 = 1918110

XH = 10000100011011102 = 3390210

We store the element XL in widget XH , but how do we store widget XH? For now, we

store it in an array. We use the convention A[N ] to refer to the Nth widget, and A[XH ] to

refer to widget XH .

Invariant 9.5.1 (Storage of elements in subwidgets). Let there be a van Emde Boas Tree

T which stores set S ⊂ U , and let XL and XH be defined as above with respect to X. The

van Emde Boas tree contains an array A of subwidgets. The array is of size
√
u, and each

subwidget in A has a universe size of
√
u. For each X ∈ U , if and only if X ∈ S, then XL

is stored in subwidget A[XH ].

In order to do search, we calculate XH and XL, find the widget A[XH ], and recursively do

the query search(A[XH ],XL).

For successor, we calculate XH and XL and find the widget A[XH ]. We then query A[XH ]

for the successor to XL. The recursive call may return an indication that there is no

successor; if that’s the case, then we look for the next widget that contains any element at

all, and return the minimum element from that widget. And finding the next nonempty

widget is itself a successor search on the set of nonempty widgets!

To accomodate this requirement, we will add one more widget W√
u. We will call this the

index widget or Windex. For convenience, when required we will refer to Sindex, the set

stored in Windex.
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Figure 9.1: The search for the successor among subwidgets. (A) A successor query looks at

the original widget that would contain the element. (B) The element is not found, so we

search for the next nonempty widget. (C) The successor must be the first element of the

widget found in (B).

Figure 9.2: The incomplete van Emde Boas tree structure.

Invariant 9.5.2 (Index widget corresponds to set of non-empty widgets). Let there be a

van Emde Boas tree T which stores set S ⊂ U . For each subwidget A[i] that is part of T , if

and only if empty(A[i]) = false, then i ∈ Sindex.

How do we do insertion in the structure? We insert XL into widget A[XH ], and also update

the index, inserting XH into Windex.

Now we have a problem. What recurrence relations apply to successor and insert now?

successor T (u) = 3T (
√
u) +O(1)

insert T (u) = 2T (
√
u) +O(1)

Without going into details, these both solve to T (u) = Ω(logp u) for some p ≥ 1. Even if

we weren’t looking for sub-logarithmic bounds, O(log u) would be a terrible running time.

It is clear that we can only make one full recursive call.
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Figure 9.3: Pseudocode for the first version of the van Emde Boas tree. Neither successor

nor insert is O(log log u), because both potentially require two recursive calls.

successor(X, Tree) {

XH = most significant half of X

XL = least significant half of X

TrialAnswer = successor(XL, Tree.WidgetArray[XH ])

if (TrialAnswer is valid) return TrialAnswer

TrialWidget = successor(XH , Tree.WidgetIndex)

if (TrialWidget is invalid) return invalid

TrialAnswer = successor(−∞, Tree.WidgetArray[TrialWidget])

return TrialAnswer

}

insert(X, Tree) {

XH = most significant half of X

XL = least significant half of X

insert(XL, Tree.WidgetArray[XH ])

insert(XH , Tree.WidgetIndex)

}

Observation 66. In order to achieve time bounds of O(log log u), we can only make one

recursive call that does significant work. Everything else must be O(1).

9.6 Insertion and Successor Queries - Second Attempt

Let’s start by examining successor, where we have three separate recursive calls to make.

We have two cases that successor deals with. Either A[XH ] contains the successor to XL,

or it does not. If A[XH ] contains the desired successor, then we only need to make that one

recursive call.

What exactly happens when A[XH ] does not contain XL’s successor? First, this means that

the largest element in A[XH ] is smaller than XL. To verify this point, we don’t actually

need to make an entire call to successor - if we had a quick way of checking the maximum

element, we could do it in constant time, and then move on to a call to successor on either
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A[XH ] or Windex, and not both.

We should also notice that, whatever widget is found by the call to successor(XH ,Windex),

we don’t need to make a full call to successor there either! All we really need is the minimum

element from that widget - which is the only element that could be the successor we are

looking for.

Observation 67. If retrieving the minimum and maximum elements in any widget takes

constant time, then successor only requires one actual recursive call.

What about insertion? This, too, is wasteful. The only time we need to make two recursive

calls is when the first element is inserted into A[XH ]. Otherwise, we don’t actually need

to insert XH into Windex, because it’s already there. It’s easy enough to maintain a count

of the elements in a widget, so that a call to something like empty will take constant time,

and we can eliminate the second recursive call in all but one case - when XH is not yet in

Windex.

Clearly it needs to be inserted at some point. So we need to reduce the cost of the first

insertion into A[XH ] to O(1) - and incidentally, we also need to maintain the minimum

and maximum elements that we rely on for insertion. The way to do this is to store the

minimum and maximum elements without ever inserting them into a subwidget. This way,

retrieving the minimum and maximum elements takes constant time, and inserting the first

element into a widget also takes constant time. This allows us to remove the extra recursive

call.

Observation 68. If the minimum and maximum values in a van Emde Boas tree are

maintained separately from the subwidgets, without being inserted into the subwidgets, then

insert only requires one recursive call.

We have completed the van Emde Boas tree. We have eliminated the extra recursive calls,

and therefore these versions of insert and successor take O(log log u) time. At this point,

the other required operations can be built along similar lines. Predecessor is an exact mirror

of successor. Deletion is somewhat tricky, but still takes O(log log u) time.

Of course, the structure still takes O(u) space.

9.7 Space Considerations

The version of the van Emde Boas tree described above is enormously wasteful in space.
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Figure 9.4: Pseudocode of second and final version of van Emde Boas tree. Even though

successor and insert both may make multiple recursive calls, only one of the recursive

calls does nontrivial work in each, so both are O(log log u).

successor(X, Tree) {

if (X > maximum) return invalid

if (X ≤ minimum) return minimum

XH = most significant half of X

XL = least significant half of X

TrialAnswer = successor(XL, Tree.WidgetArray[XH ])

if (TrialAnswer is valid) return TrialAnswer

TrialWidget = successor(XH , Tree.WidgetIndex)

if (TrialWidget is invalid) return invalid

TrialAnswer = successor(−∞, Tree.WidgetArray[TrialWidget])

return TrialAnswer

}

insert(X, Tree) {

if (maximum = minimum) {

if (X > maximum) maximum = X

else if (X < minimum) minimum = X

return

}

if (X > maximum) swap(X, maximum)

if (X < minimum) swap(X, minimum)

XH = most significant half of X

XL = least significant half of X

if (Tree.WidgetArray[XH ].empty()) {

insert(XH , Tree.WidgetIndex)

}

insert(XL, Tree.WidgetArray[XH ])

}
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Figure 9.5: The completed van Emde Boas tree.

It is assumed above that every piece of the structure has been pre-instantiated. Thus,

the array of widgets that we loosely defined before becomes enormous. In fact, we can

immediately prove that the structure takes Ω(u) space by noting that it has enough widgets

to store every possible element from the start. Even if we don’t instantiate every possible

widget, the array for the topmost widget still takes Θ(
√
u) space.

Theorem 69 (Space bounds of the deterministic van Emde Boas tree). The deterministic

version of the van Emde Boas tree with universe size u consumes Ω(u) memory.

By use of randomization (ie, hashing), and by only instantiating widgets that actually

contain an element, we can reduce the space requirements to O(n). What’s more, by

using the perfect hashing algorithm of Fredman, Komlós, and Szemerédi, as modified by

Dietzfelbinger, we can have a hash algorithm with amortized constant-time insertion and

deletion with worst-case constant time queries. This allows us to improve the space usage

to O(n) without compromising the worst-case query time.

We summarize our complete results in the following theorem.

Theorem 70 (Time and space bounds of the randomized van Emde Boas tree). The ran-

domized version of the van Emde Boas tree answers search, predecessor and successor

queries in O(log log u) worst-case time. It performs the maintenance operations insert and

delete in amortized O(log log u) time. The structure takes O(n) space.
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Chapter 10

y-fast Trees: a randomized

alternative to van Emde Boas trees

10.1 Introduction

We have a a universe U of size u = |U | and a set S of size |S| = n, S ⊂ U , and we want to

implement the following operations:

• insert(x): S ← S ∪ {x}
• delete(x): S ← S − {x}
• predecessor: pred(x), x ∈ U : return maxk∈S s.t. k ≤ x

• successor: succ(x), x ∈ U : return mink∈S s.t. k ≥ x.

All these operations are to take expected and amortized time O(log log u) (and probably

w.h.p. as well). The space cost is O(n) = O(|S|).

First, we do the X-fast tree. Then the Y-fast tree.

10.2 The X-Fast Tree

The X-fast tree is another implementation of the successor-predecessor operations. Similarly

to the van Emde Boas tree, the X-fast tree recursively splits the search word into two pieces,

at each stage picking the half that is required to continue the search. The X-fast tree,

however, uses this process to optimize the traversal of a trie.

The X-fast tree is not as fast as the van Emde Boas tree, because it takes O(log u) time
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to do maintenance operations. However, the X-fast tree is a significant part of another

structure, the Y-fast tree, and so it is simpler to cover it first.

Claim 71 (Time and space bounds of the X-fast tree). The X-fast tree answers search,

predecessor and successor queries in O(log log u) worst-case time. It performs the main-

tenance operations insert and delete in amortized O(log n) time. The structure takes

O(n log u) space.

10.3 The Structure of an X-Fast Tree

There are three parts to an X-fast tree - the trie, the linked list of stored elements, and a

set of hash tables, one per level of the trie.

10.3.1 The Trie

A trie is, in effect, a tree in which every node is labeled according to the path which goes

from the root to that node. In the case of the X-fast tree, our trie will be a binary tree in

which moving to the left child of a node is represented by a zero, while moving to the right

child of a node is represented by a one, so that, in a complete binary tree, each of the nodes

at level k would be labeled with one of the values 0 . . . 2k − 1, in order, from left to right.

The trie is also augmented with extra pointers which point to the leftmost or rightmost

child of that node, as described below.

Definition 72 (Trie Structure in an X-Fast Tree). Let S be the set of elements stored in

X-fast tree T , and let l = log u be the number of bits of the elements which can be stored in

T . For all Y ∈ S, the trie of T contains a unique leaf node at level l that corresponds to Y .

The trie contains no other leaves.

Definition 73 (Auxilliary Pointers in the Trie). Let N be some internal node of the trie in

an X-fast tree, such that N has exactly one child. Then, N contains an auxilliary pointer

to a leaf of the trie. If N ’s child is a left child, then N ’s auxilliary pointer points to N ’s

rightmost descendant. If N ’s child is a right child, N ’s auxilliary pointer points to N ’s

leftmost descendant.
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Figure 10.1: A 16-bit X-fast tree containing seven keys.

10.3.2 The Linked List

Each of the leaves of the trie is part of a linked list connecting every single leaf, in order.

As we maintain the X-fast tree, we also maintain this linked list.

10.3.3 The Hash Tables

Let’s assume our universe is of size u = 2l. There are then l+1 levels to the trie, and there

are also l + 1 associated hash tables. Each level of nodes in the trie is also entered into

the hash table of the same level. Therefore, if we want to check whether a particular node

exists in the tree, we don’t need to search the tree but instead can check the hash table.

10.4 Definitions

Definition 74 (The Search Path of an Element of S). Let T be the trie of an X-fast tree,

such that it has l+1 levels. For any Y ∈ U , there is, in T , some ordered list of nodes which

would be followed if we were doing a tree search for element Y in the trie. This ordered list

of nodes is the search path of Y .
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Figure 10.2: The search path of 46477 in the X-fast tree of figure 10.1.

Note that each node in the search path of Y is uniquely identified by a prefix of the binary

string of Y ; each node is identified by a prefix of a different length.

Definition 75 (The Full Search Path of an Element of U). Let T be the trie that is part

of an X-fast tree which contains every element in U (therefore, T is full). The search path

of some element Y in this trie is the full search path of that element.

10.5 Searching an X-Fast Tree

The structures in an X-fast tree give us a powerful way to search the tree for the information

we need. Obviously, if we want to check for the presence of an element, we can just check

the lowest (and largest) hash table, but successor and predecessor can be done very quickly

as well.

Let’s refer to query element Y , and further assume that Y does not exist in the tree - if it

does, we can directly check for it and take appropriate action. Then the search path of Y

has some lowest node, which we will call N . N must have exactly one child, since it’s on

the end of the search path. By the properties of tries, if that child is a left child, then N ’s

rightmost descendant must be the predecessor of Y . If the child is a right child, then N ’s
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Figure 10.3: Pseudocode of successor for the X-fast tree

successor(X, Tree) {

N = lowest node on search path to X in Tree

if (N.LeftChild exists) {

SuccessorNode = N.AuxilliaryPointer

} else { /* The right child exists and the left child does not */

PredecessorNode = N.AuxilliaryPointer

SuccessorNode = PredecessorNode.next

}

return SuccessorNode.value

}

leftmost descendant must be the successor of Y . Since the leaves form a linked list, we can

immediately find the successor from the predecessor, or vice versa.

We rather conveniently stored the exact pointer that we must need at an internal node in

the auxilliary pointer described above. Therefore, the above operations take constant time,

and we only need to find the lowest node on the search path of Y .

Observation 76. Finding the lowest node on the search path of Y in X-fast tree T allows

us to find both predecessor(Y ) and successor(Y ) in constant time.

To find that lowest node, we will do a binary search on the full search path of Y . We can

do this, because we know how to find every one of those nodes, since they are all derivable

from Y . What’s more, we can determine if they exist in constant time using the hash tables.

There are O(log u) nodes in the full search path, so it takes O(log log u) time to find the

lowest one that is present in the trie.

See figure 10.4 for an example. We are searching the X-fast tree of figure 10.1 for the

key 4795510 = 10111011010100112 . We first check to see if there is a node at level 8 for

10111011. There is none, so we can eliminate the lower levels of the tree from consideration.

We then look at level 4 for 1011 (exists), level 6 for 101110 (exists), and level 7 for 1011101

(exists). We can conclude that the lowest node on 47955’s search path in the tree is at level

7.

Theorem 77 (Time to Search an X-Fast Tree). It takes O(log log u) time to search for the

predecessor or successor of a query element in an X-fast tree. It takes O(1) time to check
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Figure 10.4: A binary search on the search path to 47955 in the X-fast tree of figure 10.1.

if a query element is in an X-fast tree.

10.6 Maintaining an X-Fast Tree

Maintaining an X-fast tree does not involve any special insights. It is necessary, on every

update, to walk up the tree for O(log u) levels, updating the trie, the auxilliary pointers,

and the hash tables, in order to insert or delete a element.

10.7 Space Consumption of the X-fast Tree

The X-fast tree can be quite wasteful in space, because it requires log u nodes for every

element in the tree, and most of these nodes are not shared between multiple elements

unless most of the elements are in a small cluster of the universe. Since the sizes of the hash

tables and the other components of the X-fast tree are linear in the size of the trie, we can

conclude that the X-fast tree takes O(n log u) space.

We can conclude the following about the X-fast tree:

Theorem 78 (Time and space bounds of the X-fast tree). The X-fast tree answers search,
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predecessor and successor queries in O(log log u) worst-case time. It performs the main-

tenance operations insert and delete in amortized O(log n) time. The structure takes

O(n log u) space.
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