
Chapter 14

Suffix Tree and Suffix Array

14.1 Summary

1. Trie: In this section, we introduce trie, a useful data structure to facilitate searching

in a large text base.

2. Suffix Tree: In this section, we introduce suffix tree, a special type of trie used in

searching particular pattern in large text.

3. Suffix Array: In this section, we describe suffix array, an alternative of suffix tree

with more efficient searching ability.

14.2 Trie

14.2.1 What is trie?

A string is a list of characters over an alphabet
∑

= {a, b, c, . . .} with |
∑

| = σ. A trie is a

multi-way tree structure for storing strings over an alphabet. The name of trie comes from

the work retrieval. A formal definition is given as follows,

Definition 85. A trie is a tree for storing strings in which there is one node for every

common prefix. The strings are stored in extra leaf nodes.
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14.2.2 Why do we need trie?

The trie is a data structure that can be used to do a fast search in a large text. Given a

collection of strings, we want to organize them in a manner, such that the searching for a

particular pattern is fast.

14.2.3 Non-compact trie

In non-compact trie, each edge represent exactly one symbol in the alphabet. Given data

“algorithm, algorithms, algebra, aaaah”, figure 14.1 shows the corresponding non-compact

trie, where the $ sign marks the end of a string.
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Figure 14.1: This is an example of a non-compact trie, in which four strings,

algorithm, algorithms, algebra, aaaah are stored. To search for a string, for example,

algorithm, we start at the root and we follow the a edge, followed by the l edge, then

g edge, etc., at last, we reach a leaf node corresponding to algorithm. However, if we are

trying to search for another string aloha, after we traverse a edge and l edge we can go

nowhere, which means the string aloha is not in this text base.
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14.2.4 Compact trie

This type of trie is different from the non-compact trie in that an edge can be labelled

with more than one characters. An example is illustrated in figure 14.2, in which the same

strings algorithm, algorithms, algebra, aaaah are stored in a more compact way.
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Figure 14.2: This is an example of a compact trie, in which the four strings,

algorithm, algorithms, algebra, aaaah are stored in a more compact way. Searching is the

same as for non-compact trie, the only difference is in each step we may traverse multiple

symbols.

14.3 Suffix Tree

14.3.1 What is suffix tree?

Definition 86. A suffix tree is a trie of all the suffixes of a string.

The above definition can be best illustrated by figure 14.3, which shows the suffix tree for

a string bananaba$.

14.3.2 Space cost of suffix tree

The space cost of suffix tree is O(n2), where n is the length of the string.

The worst case happens when the string has no duplicate. (Consider the suffix tree for a

string abcde$).
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Figure 14.3: This figure shows a suffix tree for the string bananaba$. It is a compact trie

composed of all the suffixes of the string bananaba$.

A more efficient way of storing suffix tree

Figure 14.4 shows a more efficient way to store a suffix tree. At here we replace every string

by a pair of indices, (a, b), where a is the index of the beginning of the string and b the

index of the end of the string.

(7,9)

(7,9)
(5,9)

(9,9)

(1,2)

(3,9)
(9,9) (5,9)

(9,9)

(3,4) (7,9)

(3,4)
(2,2)

Figure 14.4: This figure shows a efficient way for storing suffix tree for the string bananaba$.

Note that every substring is represented as a pair of indices. For example, aba is (6, 8), a$

is (8, 9), etc.

Theorem 87. The space cost of the efficient suffix tree is of O(n), where n is the length of

the string.

Proof. Consider figure 14.4, there are n+1 leaf nodes in this tree. Also, every inner node has
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more than one children, which means the total number of inner nodes is of O(n). Besides,

each edge has constant storage cost. Hence, the space cost of this kind of suffix tree is of

O(n).

14.3.3 Construction of suffix tree

The question here is how long does it take to build a suffix tree?

In general case

Naive way takes time O(n2 log σ). In 1972, Wiener: O(n) construction algorithm for con-

stant size σ. It can be easily generalized to O(n log σ) for general alphabets.

For deterministic comparion-based algorithm

After sorting, we can construct a suffix tree in linear time. e.g., cost = sort+O(n).

14.3.4 Application of suffix trees

Now we have known what is a suffix tree, and how to build suffix tree. Nonetheless, what

good are suffix trees anyway?

String matching

Given pattern P , with |P | = m; text T , with |T | = n, searching for P in T can be solved

in O(m) time. (after the suffix tree for T has been built in O(n) + sort time)

This can also be used to determine how many time does P appear in T (with its location)?

(by counting how many leaves have common prefix P )

Longest palendrome

Palindrome is a string, P , such that P = PR. For example, mom = reverse(mom). Here,

the problem is to find the longest palendrome in a text W . For example, ississi is the

longest palindrome in mississippi.
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The longest palindrome of W can be found in O(n) time by building the suffix tree on

W$WR. The longest palendrome can be found by searching for the longest common prefix

of one suffix starting in W and another in WR.

Hamming distance matching

Definition 88. The hamming distance between two patterns, P and Q, is K, means Q

can be obtained by changing the value of K characters of P . For example, the hamming

distance between ’glass’ and ’blast’ is two, because ’glass’ becomes ’blast’ after changing

two characters, g to b and s to t.

Now, our problem is that given a pattern of text P of length m and a text W of length n,

we want to find a place in W that is hamming distance at most K from P .

This problem can be solved in a naive way in time O(nm).

We can build suffix tree on W$P@, then solve this problem in time O(nK).

14.4 Suffix Array

In previous lectures we introduced suffix tree, a compact trie-like data structure whose

nodes correspond to all suffixes of a given string. Given the question that whether or not

a text S of length n over an alphabet σ contains a substring q of length m, A suffix tree

provides you the answer in O(m log |σ|) time, because any substring of S is the prefix of

some suffix in this suffix tree. Such a suffix tree can be built in O(n log |σ|) time and O(n)

space.

Now we are going to introduce a new data structure called suffix array. Basically, a suffix

array is a sorted list of all the suffixes of S. Similar as suffix trees, suffix arrays help lookup

of any substring of a text and indentification of repeated substrings. And it is more compact

than a suffix tree and suitable for storing in secondary memory.

14.4.1 What is suffix array

Definition 89. Given a text S = s1, ..., sn, a suffix array for S is an array of integers of

range 0 to n specifying the lexicographix ordering of the n+ 1 suffixes of the string S$.
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Next we show an example to explain this concept.

Assume we have such a text S : acaaacatat$, where $ is the ending symbol, the basic suffix

array of this text is:

suffixes

0 aaacatat$

1 aacatat$

2 acaaacatat$

3 acatat$

4 atat$

5 at$

6 caaacatat$

7 catat$

8 tat$

9 t$

10 $

All suffixes of S are listed in the above table. Obviously this representation is not concise:

totally we need n(n+ 1)/2 bytes to store the array and O(n log n) time to sort them.

We need a more clever representation.

First we assign index points to the sample text. In this example, index points are assigned

character by character and hence we can search the sample text with the suffix array at

any positions later:

text a c a a a c a t a t $

index 0 1 2 3 4 5 6 7 8 9 10

Now we can sort the index points according to their corresponding suffixes. After sorting

we get:
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Sorted Suffix Index

aaacatat$ 2

aacatat$ 3

acaaacatat$ 0

acatat$ 4

atat$ 6

at$ 8

caaacatat$ 1

catat$ 5

tat$ 7

t$ 9

$ 10

Thus we get the resulting index points to be the suffix array for the sample text:

suffix array : 2 3 0 4 6 8 1 5 7 9 10

14.4.2 Coupling suffix array with LCPs

To binary search a pattern in S takes O(log n) steps. In each step we need to compare m

characters of the text and the pattern. This leads to a running time of O(m log n).

Our goal is to reduce the search time, with very little construction time overhead. Specifi-

cally we want the search time to be within O(m+ log n).

Recall the definition of Least Common Prefix (LCP):

Definition 90. LCP(i, j) is the length of the longest common prefix of the suffixes specified

in positions i and j in suffix tree’s sorted order.

E.g. for S = acaaacatat, LCP(0, 1) is thus 2, the length of the longest common prefix of

aaacatat$ and aacatat$.

Now we get a new definition of suffix arrays:

Definition 91. Suffix Array is sorted order of suffixes with pairwise LCP of neighboring

suffixes.
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14.4.3 How to search

How can we use the LCP information to help the search in suffix array?

Let’s say an examination of a character of P is redundant if that character has been exam-

ined before. Our goal is to limit the number of redundant character comparisons to one per

iteration of the binary search.

Assume in a binary search process L and R denote the left and right boundaries of the

current search interval. At the beginning L = 0 and R = n − 1. In each iteration of the

binary search a query is made at location M = "(R+L)/2#. Let suf [i] be the i-th suffix in

the suffix array. Let l and r denote the longest prefixes of suf [L] and suf [R] that match a

prefix of pattern P . Assume we already have the suffix array for text S and LCP(i, j) for

all i, j in [0, n].

In an iteration of the improved binary search algorithm, if l = r we compare P to suf [M ].

In this case the minimum of l and r is also the maximum of the two and no redundant

character comparisons are made.

If l $= r, there are three cases (without loss of generity, assume l > r):

1. LCP(L,M) > l

Then the common prefix of the suffixes suf [L] and suf [M ] is longer than the com-

mon prefix of P and suf [L]. Therefore P agrees with the suffix suf [M ] up through

character l. Characters l + 1 of suf [L] and suf [M ] are identical and lexically less

than character l+1 of P . So any possible starting position must start to the right of

M in suffix array. In this case no examination of P is needed. L is set to M while l,

r and R remain unchanged.

2. LCP(L,M) < l

Then the common prefix of suffix suf [L] and suf [M ] is smaller than the common

prefix of suf [L] and P . Therefore P agrees with suf [M ] up through character

LCP [L,M ]. Character LCP(L,M) + 1 of P and suf [L] are identical and lexically

less than the character LCP(L,M) + 1 of suf [M ]. So any possible starting position

must start to the left of M in the suffix array. In this case no examination of P is

needed. R is set to M , r is set to LCP(L,M). r and R remain unchanged.

3. LCP(L,M) = l

Then P agrees with suf [M ] up to character l. Then we should compare P to suf [M ]
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starting from character l+ 1. The result determinses which of L and R change along

with the corresponding change of l and r.

We draw a tabular here to better illustrate the three cases,

suf [L] = abcdefg . . . , suf [R] = abcwxyz . . . , P = abcdemn . . . , l = 5, r = 3

suf [M ] LCP(L,M) Next Step

Case 1 abcdef . . . 7 L←−M,no change toR, r, l

Case 2 abcdgg . . . 4 R←−M, r ←− 4,no change tol, L

Case 3 abcdeg . . . 5 L←−M, l←− 5,no change tor,R

Theorem 92. Using the LCP values, the search algorithm does at most O(m + log n)

comparisons.

Proof. Notice neither l nor r decrease along iterations. Let δ be the difference between the

value of max(l, r) at the beginning and at the end of the iteration. For each iteration the

number of single character comparisons is limited to δ + 1. Sum up δ + 1 over all log n

iterations and use the fact that Σδ ≤ m, we get that the number of total comparisons is at

most m+ log n.

14.4.4 Construction of suffix array

How do we construct such a suffix array efficiently?

1. Building suffix array from suffix tree takes linear time by DFS. So the time complexity

is O(n log σ).

2. Implement by bucket sort (radix sort). Each call runs in O(n) time. The sorting

algorithm runs in O(n log n) time and consumes O(n) space.

14.4.5 How do we compute LCPs effectively?

Seemingly we need to compute n2 LCP values. However we observe only the LCP values

of the values of L and R we encounter in our binary search are needed, These values are
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constant for each search and there are only linearly many of them.

To compute all LCP values needed we take these two steps:

1. Compute the LCP values for pairs of neighboring suffixes in the suffix array.

2. For the fixed binary search tree compute the LCP values for its internal nodes using

the result we get at previous step.

This can be done during the construction of the suffix array, without additional overhead,

or alternatively in linear time with a scan over the suffix array as follows:

LCP Algorithm: Consider a suffix array SA[1, ldots, n]. If we were to compute the LCP

of SA[1] with SA[2], then SA[2] with SA[3], etc., we’d end up with an O(n2) algorithm.

Instead, we proceed in a different order, which allows for a linear-time algorithm.

Lemma 93. Given an SA array, the LCP array can be computed in linear time.

proof Let P [i] be the j such that SA[j] = i. That is, P [i] is the rank of the ith suffix.

This can be computed form SA in linear time.

Now compute the LCP of SA[P [1]] with SA[P [1]−1] by character-by-character brute force.

Suppose this is k. If k = 0, then this took constant time and we move on. Otherwise k > 0.

Now compute the LCP of SA[P [2]] with SA[P [2]] − 1. We know that this LCP is at least

k − 1 so we skip these characters and continue character-by-character as before.

And continue with the third suffix and so on.

Why is this linear time? The total work spent on finding mismatched characters is O(n),

since each mismatched character pair moves us to the next LCP computation, and there

are only n− 1 LCP computations to perform.

As for the time spent on matched characters: this is why we compute on the first suffix,

then the second, etc. Imagine a pointer that moves along the string. When we match the

characters during the computation of the LCP of SA[P [1]] with SA[P [1] − 1], we move

the pointer to the right for each matched pair found. The next computation starts with

the pointer where it is and move it (potentially) further to the right. Thus, each matched

character moves this pointer to the right by one space, and there are only n characters to

match in total.
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Thus the total computation time is O(n). QED

14.4.6 Summary of suffix array

1. Suffix arrays are more space-efficient than suffix trees.

2. Suffix arrays can be build in O(n log n) time and requires O(n) space.

3. Simple binary search in a suffix array takes O(m log n) time. When coupled with LCP

information it can be done in O(m+ log n) time.

4. The LCP values can be computed in linear time and requirs extra linear space.

14.5 Equivalence of Suffix Trees and Suffix Arrays

Theorem 94. Given a suffix tree, the corresponding suffix array can be computed in linear

time.

Proof: A traversal of the suffix tree gives the sorted order of the leaves. The LCPs can

be computed during the tree traversal.

Theorem 95. Given a suffix array, the corresponding suffix tree can be computed in linear

time.

Proof: First, compute the LCP array in linear time. Now interleave the suffix array and

the LCP array, assigning numerical values to the suffix array entries equal to their string

length. The suffix tree is given by the cartesian tree of the interleaved array, which we’ve

seen can be computed in linear time.

14.6 Computing Suffix Arrays in Linear Time (plus sorting)

We noted that suffix arrays can be computed in time equal to the sorting time of the

underlying alphabet. Here we show how to do this.
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Observation: Let S = Σn be an n character string from alphabet Σ. Let Φ : Σ→ Σ′ be a

monotone function from alphabet Σ to alphabet Σ′. Let S′ = Φ(S) = Φ(S1)Φ(S2) . . .Φ(Sn).

Then the suffix array of S is identical to the suffix array of §′. This is because the suffix

array of S depends on the sorted order of the suffixes of S, but a monotone mapping of the

characters doesn’t change the order, so it doesn’t change the suffix array.

Example: S = banana$.

=============================================

This is the MIT stuff, but it needs the figure back in, and it needs to be weeded down.

=============================================

14.7 Overview

In this lecture, we consider the string matching problem - finding all places in a text where

some query string occurs. From the perspective of a one-shot approach, we can solve string

matching in O(|T |) time, where |T | is the size of our text. This purely algorithmic approach

has been studied extensively in the papers by Knuth-Morris-Pratt [?], Boyer-Moore [?], and

Rabin-Karp [?].

However, we entertain the possibility that multiple queries will be made to the same text.

This motivates the development of data structures that preprocess the text to allow for

more efficient queries. We will show how to construct, use, and analyze these string data

structures.

14.8 Storing Strings and String Matching

First, we introduce some notation. Throughout these notes, Σ will denote a finite alphabet.

An example of a finite alphabet is the standard set of English letters Σ = {a, b, c, ..., z}.
A fixed string of characters T ∈ Σ∗ will comprise what we call a text. Another string of

characters P ∈ Σ∗ will be called a search pattern.

For integers i and j, define T [i : j] as the substring of T starting from the ith character and

ending with the jth character inclusive. We will often omit j and write T [i :] to denote the

suffix of T starting at the ith character. Finally, we let the symbol ◦ denote concatenation.

As a simple illustration of our notation, (abcde[0 : 2]) ◦ (cde[1 :]) = abcde.
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Now we can formally state the string matching problem: Given an input text T ∈ Σ∗ and

a pattern P ∈ Σ∗, we want to find all occurrences of P in T . Closely related variants of the

string matching problem ask for the first, first k, or some occurrences, rather than for all

occurrences.

14.8.1 Tries and Compressed Tries

A commonly used string data structure is called a trie, a tree where each edge stores a letter,

each node stores a string, and the root stores the empty string. The recursive relationship

between the values stored on the edges and the values stored in the nodes is as follows:

Given a path of increasing depth p = r, v1, v2, ..., v from the root r to a node v, the string

stored at node vi is the concatenation of the string stored in vi−1 with the letter stored on

vi−1vi. We will denote the strings stored in the leaves of the trie as words, and the strings

stored in all other nodes as prefixes.

If there is a natural lexicographical ordering on the elements in Σ, we order the edges of

every node’s fan-out alphabetically, from left to right. With respect to this ordering, in

order traversal of the leaves gives us every word stored in the trie in alphabetical order. In

particular, it is easy to see that the fan-out of any node must be bounded above by the size

of the alphabet |Σ|.

It is common practice to terminate strings with a special character $ /∈ Σ, so that we can

distinguish a prefix from a word. The example trie in Figure 1 stores the four words ana$,

ann$, anna$, and anne$.

If we assign only one letter per edge, we are not taking full advantage of the trie’s tree

structure. It is more useful to consider compact or compressed tries, tries where we re-

move the one letter per edge constraint, and contract non-branching paths by concatenating

the letters on these paths. In this way, every node branches out, and every node traversed

represents a choice between two different words. The compressed trie that corresponds to

our example trie is also shown in Figure 1.

figure
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14.8.2 Suffix Trees

A suffix tree is a compact trie built on the |T | + 1 suffixes of T . For exam-

ple, if our text is the string T = banana$, then our suffix tree will be built on

{banana$, anana$, nana$, ana$, na$, a$}. For a non-leaf node of the suffix tree, define the

letter depth of the node as the length of the prefix stored in the node.

Storing strings on the edges and in the nodes is potentially very costly in terms of space.

For example, if all of the characters in our text are different, storage space is quadratic in

the size of the text. To decrease storage space of the suffix tree to O(|T |), we can replace

the strings on each edge by the indices of its first and last character, and omit the strings

stored in each node. We lose no information, as we are just removing some redundancies.

Suffix trees are versatile data structures that have myriad applications to string matching

and related problems:

• String Matching To solve the string matching problem, note that a substring of T is

simply a prefix of a suffix of T . Therefore, to find a pattern P , we walk down the tree,

following the edge that corresponds to the next set of characters in P . Eventually,

if the pattern matches, we will reach a node v that stores P . Finally, report all the

leaves beneath v, as each leaf represents a different occurrence. There is a unique

way to walk down the tree, since every edge in the fan out of some node must have

a distinct first letter. Therefore, the total runtime of string matching is O(|P | + k),

where k denotes the size of the output.

• Counting Occurrences In this variant of the string matching problem, we must find

the number of times the pattern P appears in the text. However, we can simply store

in every node the size of the subtree at that node.

• Longest Repeating Substring To find the longest repeated substring, we look for the

branching node with maximum letter depth.

• Multiple Documents When there are multiple texts in question, we can concatenate

them with $1, $2, ..., $n. Then to find the longest common substring, we look for the

node with the maximum letter depth with greater than one distinct $ below.

Compared to binary search trees, suffix trees allow for faster queries and utilize less storage,

especially for texts with a large number of suffixes. Compared to hash tables, suffix trees

allow for faster worst case queries, and avoid problems caused by collisions and computing

hash functions.
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14.9 Suffix Arrays

Suffix trees are powerful data structures with applications in fields such as computational

biology, data compression, and text editing. However, a suffix array, which contains most

of the information in a suffix tree, is a simpler and more compact data structure for many

applications. The only drawback of a suffix array is that is that it is less intuitive and less

natural as a representation. In this section, we define suffix arrays, show that suffix arrays

are in some sense equivalent to suffix trees, and provide a fast algorithm for building suffix

arrays.

14.9.1 Creating Suffix Arrays

Let us store the suffixes of a text T in lexicographical order in an intermediate array. Then

the suffix array is the array that stores the index corresponding to each suffix. For example,

if our text is banana$, the intermediate array is [$, a$, ana$, anana$, banana$, na$, nana$]

and the suffix array is [6, 5, 3, 1, 0, 4, 2]. Since suffixes are ordered lexicographically, we can

use binary search to search for a pattern P in O(|P | log |T |) time.

We can compute the length of the longest common prefix between neighboring entries of

the intermediate array. If we store these lengths in an array, we get what is called the

LCP array. These LCP arrays can be constructed in O(|T |) time, a result due to Kasai

et al [?]. In the example above, the LCP array constructed from the intermediate array

is [0, 1, 3, 0, 0, 2]. Using LCP arrays, we can improve pattern searching in suffix arrays to

O(|P |+ log |T |) (see homework).

figure

14.9.2 Suffix Arrays and Suffix Trees

To motivate the construction of a suffix array and a LCP array, note that a suffix array

stores the leaves of the corresponding suffix tree, and the LCP array provides information

about the height of internal nodes, as seen in Figure 2. Our aim now is to show that suffix

trees can be transformed into suffix arrays in linear time and vice versa.

To formalize this intuition, we define the Cartesian Tree of an LCP array. To build a

Cartesian tree, store the minimum over all LCP array entries at the root of the Cartesian

tree, and recurse on the remaining array pieces. For a concrete example, see Figure 3 below.
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From Suffix Trees to Suffix Arrays

To transform a suffix tree into a suffix array, we simply run an in-order traversal of the

suffix tree. As noted earlier, this process returns all suffixes in alphabetical order.

From Suffix Arrays to Suffix Trees

To transform a suffix array back into a suffix tree, create a Cartesian tree from the LCP

array associated to the suffix array. The numbers stored in the nodes of the Cartesian tree

are the letter depths of the internal nodes! Hence, if we insert the entries of the suffix array

in order into the Cartesian tree as leaves, we recover the suffix tree. In fact, we are rewarded

with an augmented suffix tree with informationa bout the letter depths.

Fix this figure

14.9.3 DC3 Algorithm for Building Suffix Arrays

Here, we give a description of the DC3 (Difference Cover 3) divide and conquer algorithm

for building a suffix array in O(|T |+ sort(Σ)) time. We closely follow the exposition of the

paper by Karkkainen-Sanders-Burkhardt [?] that originally proposed the DC3 algorithm.

Because we can create suffix trees from suffix arrays in linear time, a consequence of DC3

is that we can create suffix trees in linear time, a result shown independently of DC3 by

Farach [?], McCreight [?], Ukkonen [?], and Weiner [?]

1. Sort the alphabet Σ. We can use any sorting algorithm, leading to the O(sort(Σ)) term.

2. Replace each letter in the text with its rank among the letters in the text. Note that the

rank of the letter depends on the text. For example, if the text contains only one letter, no

matter what letter it is, it will be replaced by 1. This operation is safe, because it does not

change any relations we are interested in. We also guarantee that the size of the alphabet

being used is no larger than the size of the text (in cases where the alphabet is excessively

large), by ignoring unused alphabets.

3. Divide the text T into 3 parts and package triples of letters into megaletters. More

formally, form T0, T1, and T2 as follows:

T0 = < (T [3i], T [3i + 1], T [3i + 2]) for i = 0, 1, 2, . . . >
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T1 = < (T [3i+ 1], T [3i + 2], T [3i + 3]) for i = 0, 1, 2, . . . >

T2 = < (T [3i+ 2], T [3i + 3], T [3i + 4]) for i = 0, 1, 2, . . . >

Note that Ti’s are just texts with n/3 letters of a new alphabet Σ3. Our text size has

become a third of the original, while the alphabet size has cubed.

4. Recurse on < T0, T1 >, the concatenation of T0 and T1. Since our new alphabet is

of cubic size, and our original alphabet is pre-sorted, radix-sorting the new alphabet only

takes linear time. When this recursive call returns, we have all the suffixes of T0 and T1

sorted in a suffix array. Then all we need is to sort the suffixes of T2, and to merge them

with the old suffixes to get suffixes of T, because

Suffixes(T ) ∼= Suffixes(T0) ∪ Suffixes(T1) ∪ Suffixes(T2)

If we can do this sorting and merging in linear time, we get a recursion formula T (n) =

T (2/3n) +O(n), which gives linear time.

5. Sort suffixes of T2 using radix sort. This is straight forward to do once we note that

T2[i :] ∼= T [3i+ 2 :] ∼= (T [3i+ 2], T [3i + 3 :]) ∼= (T [3i+ 2], T0[i+ 1 :]).

The logic here is that once we rewrite T2[i :] in terms of T , we can pull off the first letter

of the suffix and pair it with the remainder. We end up with something where the index

3i+ 3 corresponds with the start of a triplet in T0, specifically, T0[i+ 1], which we already

have in sorted order from our recursive call.

Thus, we can radix sort on two coordinates, the triplet T0[i+1] and then the single alphabet

T [3i + 2], both of which we know the sorted orders of. This way, we get T2[i :] in sorted

order. Specifically, the radix sort is just on two coordinates, where the second coordinate

is already sorted.

6. Merge the sorted suffixes of T0, T1, and T2 using standard linear merging. The only

problem is finding a way to compare suffixes in constant time. Remember that suffixes of

T0 and T1 are already sorted together, so comparing a suffix from T0 and a suffix from T1

takes constant time. To compare against a suffix from T2, we will once again decompose it

to get a suffix from either T0 or T1. There are two cases:
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• Comparing T0 against T2:

T0[i :] vs T2[j :]

∼= T [3i :] vs T [3j + 2 :]

∼= (T [3i], T [3i + 1 :]) vs (T [3j + 2], T [3j + 3 :])

∼= (T [3i], T1[i :]) vs (T [3j + 2], T0[j + 1 :])

So we just compare the first letter and then, if needed, compare already sorted suffixes

of T0 and T1.

• Comparing T1 against T2:

T1[i :] vs T2[j :]

∼= T [3i+ 1 :] vs T [3j + 2 :]

∼= (T [3i + 1], T [3i + 2], T [3i + 3 :]) vs (T [3j + 2], T [3j + 3], T [3j + 4 :])

∼= (T [3i+ 1], T [3i + 2], T0[i+ 1 :]) vs (T [3j + 2], T [3j + 3], T1[j + 1 :])

So we can do likewise by first comparing the two letters in front, and then comparing

already sorted suffixes of T0 and T1 if necessary.

14.10 Document Retrieval

The statement of the document retrieval problem is as follows: Given a collection of texts

{T1, T2, ..., Tn}, we want to find all distinct documents that contain an instance of a query

pattern P . Naively, we can store the suffixes of the text T = T1 ◦$1 ◦T2 ◦$2 ◦ ...◦Tn ◦$n in a

suffix tree and query for the pattern. However, the result of this query will include multiple

matches of P within the same text, whereas we only want to find which texts contain P .

Hence, a simple query doesn’t give us the answer we want, and is costlier than we would

like. The fix we present will follow the paper by Muthukrishan [?].

Consider the suffix array A of the augmented text T . The node corresponding to a pattern

P in the suffix tree corresponds to some interval [i, j] in the suffix array. Now the texts

containing the pattern are precisely the indices of all the dollar signs appearing in the

interval [i, j] in A. Hence, solving document retrieval is equivalent to finding the position of

the first dollar sign of each type within the interval [i, j], as the suffixes at those positions

cannot contain repeats of P .

To this end, augment the suffix array by connecting each dollar sign of a given type to the

previous dollar sign of the same type. Then the queries can be answered with a Range
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Minimum Data Structure. In particular, this gives us a O(|P |+ d) runtime, where d is

the number of texts to report.
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