
CS 5968: Data Str & Alg Scalable Comp Spring 2023

Lecture 5 — Jan. 25, 2023

Prof. Prashant Pandey Scribe: Aaron Schindler

1 Overview

1.1 Logistics

• Assignment is due next Wednesday February 1

• There are 2 guest lectures coming up, one on LSH (Feb 15) and one on ANN (March 1)

• The scribe schedule is now up to date and can be found on the course website

• If you did not send your name for scribbing, you were auto-assigned

In the last lecture we finished up vEB-Trees, and went over succinct data structures.

In this lecture we will go over efficient data structures that deal with strings (tries, compact tries,
suffix trees).

2 Tries, Compact Tries, Suffix Tree

2.1 A quick background on a current problem

A current problem in the field of genomics is gene assembly. The process of reading in genes is
called reads. Current instruments can only read in limited amounts of information at a time.
There are two types of reads:

1. short reads – instrument can read 150− 200 base pairs at a time

2. long reads – instrument can read ≈ 10,000 base pairs at a time

For reference, each person has approximately 3 billion base pairs. In addition to the massive scale
of information being handled at a time, the instruments that take biological samples do not read
accurately. There are three main types of errors:

1. Insert – reading an extra pair

2. Delete – removing/skipping a pair

3. Substitute – reading wrong pair

1

2.2 String matching

Problem: Given text T and pattern P that are strings built from alphabet Σ, find some or all
occurrences of P ∈ T.

Naive solution takes O(PT) time for each P .

GOAL: Get O(P) query time and O(T) space complexity

2.3 Warm up: Find predecessor among strings

• Given strings (T1, T2, . . . Tk)

• Build rooted trie with child branches labeled with letters in Σ

• Represent strings as root-to-leaf paths in the trie

• Add a new letter $ to the end of each string

Example: Σ = {a, e, n, $}, Commands = {ana, ann, anna, anne} Here is the trie built for this
example:

a

n

a

$

n

$ a

$

e

$

2

2.4 Trie Representation

Representation Query Cost Space Complexity

Array O(P) O(TΣ)

Balanced Search Tree O(P lg Σ) O(T)

Hash Table* O(P) O(T)

VEB/Y-Fast Tree O(P lg lg Σ) O(T)

Trays** O(P + lgΣ) O(T)

Table 1: Trie representations and their space/query complexities. *Cannot do predecessor queries.
**Can do predecessor queries

2.5 Compact Tries

A compact or compressed trie cuts out nodes that are useless, (i.e. if only one path branches,
then there is no need to create the other branches). A representation of a compact trie can be derived
from the above example with the command set {ana, ann, anna, anne}. The resulting compact trie
is displayed below:

a n

a $ n

$ a $ e $

2.6 Suffix Trees

A Suffix Tree is composed of compact tries of size |T | suffixes where T [i:] of T denotes the
branches.

Example: banana$ Given the word banana$ we can build 7 different suffixes:

0. banana$

1. anana$

2. nana$

3. ana$

4. na$

5. a$

6. $

3

To build the suffix tree, we build the tree based on suffix that starts with letter i. If two or more
unique suffixes share the same ith letter, then a branch is created. An example of the suffix tree is
given below:

$
6

a

$
5

na

$
3

na$
1

banana$
0

na

$
4

na$
2

Note that the bold numbers on each leaf in the tree correspond to the suffix listings given in the list
above

Using the suffix tree we can achieve a query time of O(P) and a space complexity of O(T).

4

